Mappings for Overture
A Description of the Mapping Class
and Documentation for Many Useful Mappings

William D.

Henshaw 1

Centre for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore,

CA, 94551

henshaw@linl.gov
http://www.lInl.gov/casc/people/henshaw
http://www.lInl.gov/casc/Overture January 2, 2003 UCRL-MA-132239

Abstract

This document describes the class Mappi ng. The Mapping class is used to define transformations. These transformations
are used within Overture to define grids and stretching functions and rotations etc. The base class is called Mappi ng. Par-
ticular mappings such as a sphere or an annulus are defined by deriving a class from the base class and defining the particular
transformation. A number of derived Mappings have been written including

Various Analytical mappings: LineMapping, SquareMapping, CircleMapping, AnnulusMapping, BoxMapping, Cylin-
derMapping, PlaneMapping, QuadraticMapping, SphereMapping

AirfoilMapping : for creating airfoil related grids and curves (including some NACA airfoils).
ComposeMapping : for composing two mappings

CompositeSurface : a mapping that represents a collection of sub-surfaces.

CrossSectionMapping : define a surface by cross-sections

DataPointMapping : mappings defined by data points

DepthMapping : create a 3D grid from a 2D grid by adding a variable depth.

EllipticTransform: smooth a mapping with an elliptic transform.

FilletMapping: create a fillet or collar grid to join two intersecting surfaces.

HyperbolicMapping: create volume grids using hyperbolic grid generation (described else-where).

IntersectionMapping: a mapping that is the intersection between two other mappings, such as the curve of intersection
between two surfaces.

JoinMapping: create a mapping that can join two intersecting mappings.
MatrixMapping : define a matrix transformation by rotations, scaling, shifts etc.
MatrixTransform : apply a matrix transformation to another mapping
NormalMapping : define a new mapping by extending normals

NurbsMapping : define a mapping by a NURBS, non-uniform rational b-spline.
OffsetShell : build offset surfaces and an overlapping edge mapping to join them.
OrthographicTransform : define an orthographic transform

ReductionMapping : make a new Mapping from the face or edge of another mapping.

ReparameterizationTransform : reparameterize a mapping (e.g. remove singularities, or equidistribute grid lines by
arclength and curvature).

RestrictionMapping : define a restriction to a sub-rectangle.
RevolutionMapping : create a surface or volume of revolution
RocketMapping : create curves related to rocket geometries.
SmoothedPolygon : for polygons with smoothed corners
SplineMapping: define a cubic spline curve.

1This work was partially supported by grant N00014-95-F-0067 from the Office of Naval Research

CONTENTS 2
e StretchMapping : one-dimensional stretching transformations
e StretchedSquare : stretch grid lines on the unit interval.
e StretchTransform : stretch grid lines along the coordinate directions
e SweepMapping : Sweep a 2D Mapping along a curve in 3D.
e TFIMapping : define a grid from given boundary curves by transfinite-interpolation (Coon’s patch).
e TrimmedMapping : define a trimmed surface in 3D, the surface has portions removed from it (“trimmed”).
e UnstructuredMapping : create an unstructured representation for an existing mapping or read in an manipulate and
unstructured mesh.
All these classes are described in this document.
Contents
1 Introduction 14
11 Example: . . . e 16
2 Class Mapping 16
21 EnuM TYPES . o 16
2.2 Member FUNCLIONS o 17
221 CONSITUCIOr 17
2.2.2 basiCINVEISE e e 18
223 epsilon .. 18
2.2.4 secondOrderDerivative L e 18
225 display 18
2.2.6 getindex e 19
2.2 Bl . . e 19
228 getlD . .. 19
22,9 setlD ..o 19
2.2.10 getBasiclnverseOption L e 19
2.2.11 getBoundaryCondition e 19
2.2.12 getBoundingBoX 20
2.2.13 getBoundingBoX 20
2.2.14 getCoordinateEvaluationType 20
2.2.15 getDomainBound L e 20
2.2.16 getDomainCoordinateSystem 20
2.2.17 getDomainCoordinateSystemBound e 20
2.2.18 getDomainDImension 20
2.2.19 getDOmainSPace o 21
2.2.20 getGridDImeNSIONS L e 21
2221 getGrid 21
2.2.22 getlnvertible e 21
2.2.23 getlsPeriodic 21
2.2.24 getMappingCoordinateSystem 21
2.2.25 getName 22
2.2.26 getParameter 22
2.2.27 setParameter(int) e e 22
2.2.28 getPeriodVeCtor 23
2.2.29 getRangeBound 23
2.2.30 getRangeCoordinateSystem 23
2.2.31 getRangeCoordinateSystemBound 23
2.2.32 getRangeDIimension e 23
2,233 getRangeSpace e 23
2234 getShare. 23
2235 getShare. 24
2.2.36 getTypeOfCoordinateSingularity 24
2.2.37 hasACoordinateSingularity 24

CONTENTS 3

2.3

24
25
2.6

2.7
2.8
2.9

2.10

2.2.38 INtErSECIS o 24
2239 inverseMap 24
2240 inverseMapC 25
2.2.41 inverseMapGrid. 25
2242 MAP . . . 25
2243 mapC . . e 26
2.2.44 mapGrid e 26
2.245 mappingHasChanged L L 26
2246 gridIsValid 27
2.2.47 setGridIsValid L 27
2.248 periodicShift e 27
PrOJECE . o o o e 27
2.3 1 PUL 27
2.3.2 reinitialize 27
2.3.3 setName e 28
2.3.4 setCoordinateEvaluationType e 28
2.3.5 setTypeOfCoordinateSingularity e 28
2.3.6 topologyMask 28
2.3.7 QetTopology . . . o o 28
2.3.8 SetTopology o 29
2.3.9 setDomainDIimension 29
2.3.10 setRangeDImeNsion e 29
2.3.11 setBasiclnverseOption L 29
2.3.12 setBoundaryCondition L 29
2.3.13 setShare 29
2.3.14 getShare. 29
2.3.15 setMappingCoordinateSystem e 30
2.3.16 setlsPeriodiC 30
2.3.17 setGridDImensioNs 30
2.3.18 setlnvertible L 30
2.3.19 setParameter(real) L 30
2.3.20 setParameter(int) e e 31
2.3.21 setPeriodVECtOr 31
2.3.22 setDOMAaINSPACE o 31
2.3.23 setRanNQeSPace 31
2.3.24 setDomainCoordinateSystem 31
2.3.25 setRangeCoordinateSystem e e 31
2.3.26 setDomainBound L 31
2.3.27 setRangeBound 32
2.3.28 setDomainCoordinateSystemBound e e 32
2.3.29 setRangeCoordinateSystemBound 32
2.3.30 USeRoObUSLINVEISE 32
2.3.31 SizeOf . . . L 32
2332 Update 32
2333 update 33
2.3.34 interactiveUpdate 33
2.3.35 Periodic Mappings 33
Member function map e 33
Member function get Il ndex e 34
Member functionsi nver seMap andbasiclnverse 34
2.6.1 Member Functionsget Nanme ,setName 35
Coordinate singularities L 35
Coordinate systems and coordinateEvaluationType 36
Class MappingParams e e 36
2.9.1 DataMembers 36
Class ApproximateGloballnverse 37

2.10.1 construCtor e e 37

CONTENTS

2.10.2 SetGrid
2.10.3 QetGrid e
2.10.4 getParameter L
2.10.5 getParameter
2.10.6 setParameter
2.10.7 setParameter(int) e e
2.10.8 useRobustInverse
2.10.9 usingRODUSLINVEISE o
2.10.108ize0f . . . L
210,00 get. . .
20012 PUL . L .
2.00.130NVEISE . o o o
2.10.14 initializeBoundingBOXTIEES
2.10.15findNearestGridPoint L

2.10.16 bi
2.10.17 bi

narySearchOverBoundary
narySearchOverBoundary

2.10.18findNearestCell e
2.10.19 countCrossingsWithPolygon
2.11 Class Exactlocallnverse o

Inverting the Mapping by Newton’s Method

3.1 ThecaseofasquareJdacobian.
3.2 Thecaseofanon-squareJacobian
3.2.1 Method 1: Least SQuUares o o o o e

4.1
4.2
4.3
44

51
52
53

54

322 O

Id way: minimize [o distance e

3.2.3 CONSLIUCIOr o e e e
3.24 getParameter e e
3.2.5 setParameter L e
3.2.6 SizeOf . . . e
3.2.7 reinitialize ... L e
3 2.8 get. L e
3.2.9 PUL L e

3.210 in

talize . . .

3.2.11 compressConvergedPointsS
3212 INVEISE . . .
3.3 Registering Mappings and Reading Generic Mappings fromthe DataBase

AnnulusMapping

CONSEIUCIOr o o e e

setRadii
setOrigin

SEtANGIEBOUNGS e

AirfoilMapping: create some airfoil related grids or curves

NACA airfoils o
Joukowsky Airfoil
Member function descriptions
5.3.1 CONnsStruCtor
532 setBoXBOUNAS
5.3.3 setParameters
5.3.4 setloukowskyParameters

Examples

CONTENTS

6

10

BoxMapping

6.1 Member functions L e e
6.2 CONSIIUCIOr e
6.3 rotate L e
6.4 QetVertiCeS o
6.5 SEEVEILICES o e e

CircleMapping (ellipse too)
7.1 Constructor(2D) e
7.2 Constructor(3D)

ComposeMapping: compose two mappings
8.1 CONSIIUCIONS o o o o e e e e
8.2 Member FUNCLIONS e

CompositeSurface: define a surface formed from many sub-surfaces

9.1 Projection onto the composite surface
9.1.1 Movingaround Sharp COMNErs o v i e e e e e e e
9.2 CONnStrUCIOr e
0.3 OPEratOr = L
9.4 add e
9.5 isVisible . . . e e
9.6 setlsVisible e
9.7 findOutwardTangent
9.8 findNearbySurfaces L
9.9 determineTopology
9.10 numberOfSubSurfaces e e
Q11 [1. - - e
9.12 printStatistics
Q.13 rEBMOVE . . o o e e
9.14 recomputeBoundingBox
9.15 getColour L L
9.16 SetColoUr e
0.17 ProjJeCt e e
0.18 ProjeCt . . . o
919 MAP . . .
9.20 getSignForNormal L
9.21 setToleranCe e e
0.22 getTolerance
9.23 eraseCompositeSurface
9.24 findBoundaryCUIVES o o
9.25 Examples oL
CrossSectionMapping: define various surfaces by cross-sections
10.1 Description
10.2 General Cross-sectiontype
10.2.1 Notes for generating general cross section mappings e
10.3 Ellipse Cross-seCtion type o i e e
10.4 Joukowsky Cross-SeCtion type e
10.5 Cross section Mappings with polar singularities
10.6 CONSLIUCIOr e e e
10.7 SetCrossSEeCtioNTYPE o o
10.8 CONStrUCIOr e e

10.9 EXamples o

CONTENTS

11

12

13

14

CylinderMapping

11.1 CONStrUCIOr e
11.2 setAngle . . . o o
11.3 SEtAXIS . . o o e e
11.4 setOrientation L e e e
115 setOrigin e e
11.6 setRadiUS e

DataPointMapping: create a mapping from an array of grid points
12.1 DesCription o o
12.2 Fast Approximate INVEISE o o e
12.3 CONSIIUCIOr o o e
12.4 getDataPoints e
125 getGridIindexRange
12,6 getDIMENSION o e e
12.7 setDataPoints o e e
12.8 setDataPoints e
12.9 computeGhostPOINtS
12.10setNumberOfGhostLines
12.11projectGhostPoints L e e e e
12.12setDataPoints(fileName)
12.13setMapping o e
12.14setOrderOfInterpolation
12.15setOrderOfInterpolation e
12.16useScalarArraylndexing e e e
12.16.181Ze0f e
12.17update

DepthMapping: Add a depth to a 2D Mapping
13.1 DesCription o o e
13.1.1 Quadraticdepthprofile
13.2 Examples . . . o
13.3 CONStrUCIOr o
13.4 setDepthFUNCLion
13.5 setDepthFunction e e e
13.6 setSurface e
13.7 setQuadraticParameters

EllipticTransform
14.1 Introduction L e
14.2 The Governing EQUations o
14.3 Control of the Boundary
14.3.1 Dirichlet Conditions e e
14.3.2 Orthogonal Boundary Conditions
14.3.3 Periodic Boundaries
144 SOUICES . . o o o e e e e e e
14.5 Using the Elliptic Grid Generator With Ogen
1451 Grid DIMENSIONS o o e e e
14.5.2 Boundary Conditions e e e e
1453 Sourcesand SinkS L e
145.4 Other FUNCLIONS o e e
14.6 InConclusion e
14.7 Member functions e e e
14.7.1 CONSIrUCIOr o o
14.7.2 get. . o o e
T47.3 PUL . .
14.7.4 generateGrid L

CONTENTS

14.8

EXamples
14.8.1 Smoothed out diamond airfoil

15 FilletMapping

16

15.1
15.2
15.3
154
155
15.6

15.7

Description of Approach
Fillet for two intersecting surfaces
SEECUIVES . o o o o o
MED . o o e e e e e
UPAtE o e
eXamples . . L
15.6.1 2D Filletjoiningtwo lines
15.6.2 Fillettojointwocylinders
15.6.3 Fillettojointwospheres
HyperbolicMapping

IntersectionMapping

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

CONStIUCIOr e e
CONSTIUCIOr o e e
INEISECE . . . o . e
INEBISECE . . . o . e
NEWLONINtErSECtion e
PrOJECE . o o .
determinelntersection L e e
MAD . o o o e e e
INtErSECtCUIVES o o o e

16.10MaAP . . o o
16.1006t . . . o
16.02PUL . . .
16.23update L e e

17 JoinMapping

18

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

A2Dexample . . . L
Intersecting surfaces e e
Intersecting a volume intersector mapping with a surface intersectee mapping.
SetENdOTfIoIN L e
MAD .« o o e
Update e
Class LINeEMapping o e
CoNStIUCIOr o o
CoNStrUCIOr o e e

17.10C0NStIUCIOr o . o e e e
17.12getPoints L
17.020etPointS e
17.130etPointS e e
17.045etPOINtS e
17.155etPOINtS e
17.06SetPOINtS o e e

MatrixMapping: define a mapping from scalings, shifts and rotations

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9

COoNnStIUCIOr e
(0] - 1
(0] 1
SCAle . . L e
)
TESBL . . . o e
matrixMatrixProduct e
matrixXVectorProduct e e
MatrixXINVErSION e e e e

CONTENTS

19

20

21

MatrixTransform: rotate, scale or shift an existing mapping

19.1 Description
19.2 CONSIIUCIOr o o o e
19.3 Constructor(Mapping&) o
194 TeSet . . . o o
195 rotate L
19.6 rotate L
107 scale L
10.8 shift e

NormalMapping: define a new mapping by extending normals
20.1 DeSCription
20.2 Member Functions

NurbsMapping: define a new mapping as a NURBS.
21.1 CoNSrUCIOr o o o e e
21.2 CONSIIUCION o o o e
21.3 intersect3DLINES
21.4 buildCurveOnSurface o
215 circle . .
21.6 getKNOtS L
21.7 getControlPoINtS
21.8 nsertkKnot
21.9 0nsertkKnot L
21.10readFromligesFile L
21.11parametriCCUIVE . . . o o o e
21.12shift . .
21.13scale . . . L
2L14r0tate e
2L.1510tate . . . L
21.16specify knots and control points L
21.17specify knots and control points L
21.17.1setDomaininterval L
21.48initialize()
21.19setBounds L L
21.20removekNOt L L
21.21getParameterBounds L L
21.22reparameterize
21.23transformKnots L e
21.24elevateDegree e
21 25MEBIgE . . e
21.26forcedMerge L
21.27fForcedPeriodiC L
21.28split . . .
21.29mMoVeENdpoint L L e e
21.30numberOfSUbCUNVES o e e
21.31numberOfSubCurvesinList
21.32SUDCUIVE . . o o o o e e e
21.33subCurveFromList L
21.34interpolate L L
21.35MAP . . L e e
21.36MapVECIOr e e
21.37put(fileName) e
21.38put(FILE™) . . . o e
21.39get(fileName)
2LA0PpUt(FILE ®) . . o e e
21.400etOrder

CONTENTS

22

23

24

25

26

27

21.429etNumberOfKNOLS o o e
21.43getNumberOfControlPoints o o e
21.44buildSUBCUIVES o o
21.45truncateToDomainBounds L
21.46toggleSubCurveVisibility o
21.47isSubCurveHidden L
21.48isSubCurveOriginal
21.49toggleSubCurveOriginal
21.50addSubCurve
21.51deleteSUBCUIVE e e
21.52update e
21.53ExXamples

OffsetShell: Define mappings to build a grid around a shell or plate.

22.1 Defining the edge surface : an overlappinground
22.2 Member function descriptions
22.3 CONSIIUCIOr o o o e
22.4 buildOffsetMappings o
225 generateMolumeGrids
22.6 createOffsetMappings L e e

OrthographicTransform : define an orthographic transform

23.1 Description
23.1.1 Orthographic transform to reparameterize a spherical-polar singularity
23.1.2 Orthographic transform to reparameterize a cylindrical polar singularity

Member functions

24.1 Default Constructor e e
24.2 setANQUIArAXIS L
24.3 setPole e
244 SBISIZE e
245 Class PlaneMapping o o o o
24.6 CONSIIUCIOr e
247 SEtPOINIS e

QuadraticMapping: define a quadratic curve or surface.

25.1 EXamples e
25.2 CONSIUCIOr o
25.3 setQuadraticParameters e
254 setParameters

ReductionMapping: create a Mapping from the face or edge of an existing Mapping

26.1 DesCription
26.2 CONSITUCIOr e
26.3 CONSIrUCIOr e
26.4 CONSIrUCIOr e
26,5 SBl . . L e e
26.6 SBl . . . e
26.7 SEtINACLIVEAXES o o o e
26.8 SELINACLIVEAXES o o e

ReparameterizationTransform: reparameterize an existing mapping (e.g. remove a polar singularity)

27.1 DesCription
27.2 Reparameterizing a spherical-polar or cylindrical-polar singularity
27.3 Default Constructor e
27.4 Constructor(Mapping,ReparameterizationTyPes) o v v v i i e
27.5 Constructor(MappingRC,ReparameterizationTypes)« o o v v i i
27.6 constructor(MappingRC,ReparameterizationTypes)

CONTENTS

28

29

30

31

32

27.7 constructorForMultipleReparams
27.8 scaleBound e
27.9 getBounds
27.10setBounds L
27.10.1 getBoundsForMulitpleReparameterizationso
27.10.2 setBoundsForMulitpleReparameterizations
27.10.3 parameterize e e

RestrictionMapping: define a restriction to a sub-rectangle of the unit cube

28.1 DesCription
28.2 Default Constructor
28.3 scaleBounds L
28.4 getBounds
28.5 setBounds
28.6 setSpacelsPeriodiC e

RevolutionMapping: create a surface or volume of revolution

29.1 DesCription e e
29.2 Inverse of the mapping
29.3 Reparameterized to spherical-like coordinates
29.4 Examples
29.5 CoNSrUCIOr o o o e
29.6 CONSIIUCIOr o o
29.7 setRevolutionAngle L e
29.8 getRevolutionANngle L e
29.9 setParameterAXES e e
29.10setRevolutionary
29.11setLineOfRevolution L

RocketMapping: create rocket geometry curves

30.1 SIot . . L

30.2 StAr . .

30.3 circle . . L

30.4 Member functions
30.4.1 CONStrUCIOr o e e
30.4.2 computePoINtS L
30.4.3 computeSIotPoINtS L e
30.4.4 computePoints e e
30.4.5 computeCirclePoints
30.4.6 update

SmoothedPolygon
31.1 update(MappingInformation &) e
312 EXamples . . . o

SphereMapping

32,1 Examples
32.2 ConStrUCIOr o
323 setOrigin . . . L
32.4 SetPhi . . . e
325 setRadii
32.6 setTheta o o

CONTENTS

33 SplineMapping: create a spline curve
33.1 Member functions L
3311 Constructor e e e
332 Shift . . .
333 scale . .
334 rotate . . L
33.4.1 setParameterizationTyPe o o
33.4.2 getParameterization
33.4.3 getNumberOfKNOtS
33.4.4 setParameterization e e
3345 parameterize e
33.4.6 setEndConditions
3347 setPOINS e
33.4.8 setPoiNts e
33.4.9 setPoINts e
33.4.10setShapePreserving L e e
334ALLSELTENSION . . o o o o e
33.4.12setDomaininterval L e
33.4.13getDomaininterval
33.4.14 setlsPeriodic e
33.4.15use00dSpline L
33406MAP . . . e
33407 Update
335 EXamples

34 SquareMapping (rectangles too)
34.1 CONSTIUCIOr o
34.2 getVRILICES o o
34.3 SetVEILICES e

35 StretchMapping: create 1D stretching functions
35.1 Inverse hyperbolic tangent stretching function
35.2 Hyperbolic tangent stretching function L
35.3 Exponential stretching function
35.4 Exponential blending function
35.5 Member function descriptions
35.5.1 CONStruCtor e
35.5.2 CONStruCtOr
35.5.3 setStretchingType
35.5.4 setNumberOfLayers e e
35.5.5 setNumberOlntervals
35.5.6 setNumberOfSplinePoints
35.5.7 setLayerParameters
35.5.8 setintervalParameters e
35.5.9 setEndPoints
35.5.10setIsNormalized
35.5.11setScaleParameters
35.5.12setlsPeriodic
35.5.13 setHyperbolicTangentParameters e
35.5.14 setExponentialParameters L L e
35.6 EXampleso e

36 StretchedSquare: stretch grid lines on the unit interval
36.1 DesCription e

11

161
161
161
161
162
162
162
162
162
162
163
163
163
163
163
164
164
164
164
164
164
165
165
165

167
167
167
167

168
168
170
170
170
170
170
170
171
171
171
171
171
172
172
172
172
172
173
173
173

176

CONTENTS

37

38

39

40

StretchTransform: stretch grid lines of an existing mapping

37.1 DesCription
37.2 CoNStrUCIONS o o e e e e
37.3 DataMembers e e
37.4 Member FUNCLIONS

Sweep Mapping

38.1 SWEBD . . . e
38.2 CONSIIUCIOr o o e e
38.3 SetSweepSurface e e
384 SetCentering o
38.5 setOrientation
38.6 SetEXtrudeBounds L
38.7 setStraightLine
38.8 SetSWeepCUIVE o
38.9 SetScaleSpline
38.10setMappingProperties
38.1IFINAROWSPIINES o o
38.12MaAp . . . e
38.13EXaMPles e

TFIMapping: Transfinite-Interpolation
39.1 Compatibility conditions
39.2 EXamples e
39.2.1 2D linear TFI mapping with 2 sides specified
39.2.2 2D hermite TFl mapping with 2 sides specified
39.2.3 2D linear TFI mapping with 4 sides specified
39.2.4 3D linear TFI mapping with 2 sides specified
39.3 SetSIdes
394 flipper . . . e
395 MaP ..o
39.6 Update

TrimmedMapping: define a trimmed surface in 3D

40.1 DesCription o o
40.2 ConStructor e e
40.3 ConStructor e
40.4 CONSITUCIONr o o o e e e e e e e
40.5 SEtCUIVES . o . o e e e
40.6 setUnlnitialized e
40.7 initializeTrimCUIVES o o e e
40.8 addCUrVe e e
40.9 deleteTrimCUIVe e
40.10deleteTrimCUIVe e e e
40.11undoDelete e e
40.12initializeQuadTree (protected) L
40.130getOULErCUIVE o o o e e
40.140etinnerCurve L
40.15curveGoesThrough L e
40.16insideOrOutside L
40.17insideOrOutside e e
40.18fiNdCIoSeStCUIVE o e
40.19findDistanceTOACUIVE o o e e e e e e e
40.20MAP . . e e e
40.21MAP . . e
40.22update . . oL .
40.23reportTrimCurvelnfo

12

CONTENTS 13

4

40.24reportTrimminglInfo L 196
40.25editTrimCUIVE o o o e e e 196
40.26editNUrbsTrimCurve o e e 196
UnstructuredMapping 197
41.1 Implementation Details L 197
41.2 lterations Through the Unstructured Connectivity o 197

41.2.1 Elementiteration 197

41.2.2 Vertex iteration L 197

41.2.3 lteration through the verticesinanelement 197

41.2.4 lteration throughthefaces 197

41.2.5 lteration through the verticesinaface 198
413 EnUMTYPES . . o o o e 198
414 File FOrmats o o 198
41.5 Relationship to Normal Overture Mappings 0 0 e e e e 199
41.6 Member Function DesCriptions 199
417 CONSIIUCTOr o o 199
41.8 CONSLIUCIOr o 199
41.9 addGhostElements 199
41.10getBoundaryFace e 199
41.11getGhostElements L 199
41.12getMask e 199
41.13getBoundaryFaceTags 200
41.14getNumberOfNoOdes 200
41.15getMaxNumberOfNodesPerElement e 200
41.16getMaxNumberOfNodesPerElement e 200
41.17getMaxNumberOfNodesPerFace 200
41.18getNumberOfElements 200
41.19getNumberOfFaces 200
41.20getNumberOfBoundaryFaces 200
41.21getNumberOfEdges e 201
41.2206tNOUES e e 201
41.23getElements 201
41.2406tFACES 201
41.250etFaces 201
41.260etEdges e 201
41.27getElementFaces L 201
41.28QEITAGS - - . o 202
41.29setElementDensityTolerance 202
41.30SetTagS - - v . o e e e 202
41.31setNodesANdCONNECLiVILY o o e 202
41.32setNodesElementsAndNeighbours 202
41.33setNodesAndConnectivity 203
41.34buildFromAMapPINg o o 203
41.35printConnectivity L 204
41.36printConnectivity 204
AL.37printStatistics e e 204
41.38getfromanasciifile 205
41.39puttoanasciifile 205
41.40findBoundaryCuUrveS 205
41LA41CONSIIUCIOr o o o e 205
41A42C0NSIIUCKOr o o 206
41LA3CONSIIUCIOr 206
41.44getNumberOfNOdes 206
41.45getMaxNumberOfNodesPerElement 206
41.46getMaxNumberOfNodesPerElement 206

41.47getMaxNumberOfNodesPerFace e 206

CONTENTS

42

43

44

41.48getNumberOfElements L
41.49getNumberOfFaces
41.50getNumberOfBoundaryFaces
41.51getNumberOfEdges
41.520etNOTES
41.53getElements L e
A1549etFaces e e
41550 tFaces e
4156QetEdOeS
AL570etTags o o
A1.58SetTagS . . . o e e
41.59setNodesANdCONNECtIVILY o
A1.60PrOJECE . . o o
41.61buildFromAMapPINg
41.62get fromanasciifile
41.63puttoanasciifile e
41.64CONSIIUCIOr o e
41.650etCOolOUr
41.66SetCOIOUr
41.67eraseUnstructuredMapping e
41.680etColour
41.69SetCOlOUr
41.70eraseUnstructuredMappingo
41.70addTag . . . o
41.72deleteTag
41.73deleteTag
ALT74NasTag o o e
A1750QetTag . . .« o o o e e
41.76getTagbData e
41.77setTagData e
41.78maintainTagToOENtityMap o e
41.79maintainsTagToENtityMap e

Class Fraction
421 CONSIIUCIOIS o o o e e e e e e e
42.2 Member FUNCLIONS o e

Class Bound

431 BNUMTYPES . . . o o e
43.2 CoNStrUCIOrS e e e e
43.3 Member FUNCLIONS o e

Class Triangle

44.1 ConStrUCOr
44.2 Constructor(const real X1[],X2[1.X3[1) - - - - - o o o o o i e
44.3 Constructor(const RealArray & X1, X2,X3) o o o
44.4 Constructor(grid)
445 setVertices(const real X1, X2,X3) oo
44.6 setVertices(const RealArray & X1,X2,X3) o e e
QA7 SEEVRITICES o o o
O -
449 display
44 10tetraheadralMolume L e e
QALLINTEISECES e
AA12INKEISECES . . . o e
QA.13INTEISECES e
QA1AINTEISECES

14

1 INTRODUCTION 15

44.15¢getRelativeCoordinates 218

1 Introduction

The C++ class “Mapping” can be used to define the “mappings” (transformations) and their properties. For example, each
component grid in an overlapping grid will contain a member function that defines the mapping from the unit square (or unit
cube) onto the domain covered by the grid. This mapping may in turn be defined in terms of the curves (or surfaces) that form
its boundaries. Stretching functions as well as rotations and scalings are all defined by mappings.

New mappings are defined by derivation from the base class “Mapping”. For example, the class “MatrixMapping” is a
derived class that defines transformations such as rotations, scalings and translations.

The mapping class can be used to define mapping functions for curves, areas, surfaces, volumes etc.:

f : RdomainDimension _, prangeDimension qom qin Dimension < rangeDimension , rangeDimension =0,1,2,3
For example a curve in 2D would have (domainDimension, rangeDimension) = (1,2) and a volume in 3D would have
(domainDimension, range Dimension) = (3, 3)

RdomainDimension g called the domain of the mapping while RrengeDimension jg called the range.
The domain will either be parameter space (i.e. unit line, unit square, or unit cube) or cartesian space (i.e. physical space
with coordinates (1, x2, x3)). Similarly, the range is either parameter space or cartesian space.

1 INTRODUCTION 16

- Derived from

—
- AN
/ NurbsMapping
\ /
~

\h——”

(ComposeMapping

\§——_—/

’——~

- \\

’———~~

/ -~
| SquareMapping) (SmoothedPolygon)
7 i ~ - ”’
{ StretchMapping /‘
\\ e

N-———’

Figure 1: Class diagram for a Mapping

2 CLASSMAPPING 17

1.1 Example:
Here is a simple example of creating and evaluating a mapping and its inverse. (file exanpl el. C)

#i ncl ude "Mappi ng. h"
#i ncl ude "BoxMappi ng. h"
int
mai n()
{
int axisl1=0; int axis2=1; int axis3=2;
/1 -- Define a box in 3D
BoxMappi ng cube(1.,2.,1.,2.,1.,2.) ; /] create a cube: [1,2]x[1,2]x[1,2]
cube. set Nane(Mappi ng: : mappi ngNane, "cube") ; /1 give the mapping a nane

cube. set | sPeri odi c(axi s1, Mappi ng: : derivativePeriodic); // periodic in x direction
Real Array r(1,3),x(1,3),xr(1,3,3),rx(1,3,3); /] evaluate only 1 point
r(0,axisl)=.25; r(0,axis2)=.5; r(0, axis3)=.75;

r.display("here is r");
cube. map(r,x,xr); /1 evaluate the mapping and derivatives: r --> (X, Xr)

x.di splay("here is x after map");
r=0;
cube.inverseMap(X,r,rx); /'l evaluate the inverse mapping: X --> (r,rx)

r.display("here is r after inverseMap");

return O;

2 Class Mapping

The base class for mappings is the class Mappi ng.

2.1 Enum Types

The following enum types are members of Class Mapping.
Here are the enumerators for the possible spaces for the domain and range

enum mappi ngSpace{
par anet er Space, /1 bounds are [0, 1]
cartesi anSpace } /1 default (-infinity,infinity)

b

For example, a stretching function will normally map from par anet er Space to par anet er Space. A square grid will
usually be a mapping from par anmet er Space to car t esi anSpace (i.e. physical space with coordinates (x1, z2,x3)). A
rotation will normally be a mapping from car t esi an spacetocartesi an space.

Here are the enumerators used to define the periodicity of the mapping (i.e. possible values for get | sPer i odi c)

enum peri odi cType

{
not Peri odi c,
derivativePeri odi c, /] Derivative is periodic but not the function
functionPeriodic /1 Function is periodic

H

Here are the enumerators for the coordinate systems that we can use for the domain or the range

2 CLASSMAPPING

enum coor di nat eSyst en{

cartesian, Il xX,y,2

spheri cal, /1 phi/pi, theta/2pi, r

cylindrical, /1 thetal2pi, z, r

pol ar, /Il r, thetal2pi, z

t or oi dal /'l thetall/2pi, theta2/2pi, theta3/2pi

b

Coordinate systems are discussed in greater detail later.

Here are the enumerators for the items that we save names for in the form of character strings,

enum nmappi ngl t enNane

{
mappi ngNane, /1 mappi ng nane
domai nNare, // domai n name
rangeNane,

domai nAxi s1Nane, // names for coordinate axes in donain
domai nAxi s2Nane,
domai nAxi s3Nane,
rangeAxi slNane, // nanmes for coordinate axes in range
rangeAxi s2Nane,
r angeAxi s3Nane

b

The names are assigned and retrieved with the the member functions set Namre and get Nare.

Here are the enumerators used to supply options to set Basi cl nver seQpti on

enum basi cl nverseOptions // options for basiclnverse
{

canDoNot hi ng,

canDet er m neCQut si de,

canl nvert

b

Use the set Basi cl nver seQpt i on or get Basi cl nver seOpt i on functions to retrieve or change these values.
Here are enumerators for the types of Mapping coordinate systems, these are used to optimize the computation of difference

approximations to functions defined on grids derived from this mapping.

enum mappi ngCoor di nat eSyst em

{
rectangul ar, /1 rectangul ar mappi ng
conformal, /'l conf ornal : metric tensor is diagonal
ort hogonal , /1 orthogonal mappi ng : nmetric tensor is diagonal
gener al /'l general transformation : no special properties

H

Use the set Mappi ngCoor di nat eSyst emand get Mappi ngCoor di nat eSyst emfunctions to retrieve or change the

mapping coordinate system.

2.2 Member Functions

In the following r eal will denote either f | oat or doubl e.

2.2.1 constructor

Mapping(int domainDimension_ =3,
int rangeDimension_ =3,
mappingSpace domainSpace_ =parameterSpace,
mappingSpace rangeSpace_ =cartesianSpace,
coordinateSystem domainCoordinateSystem_ =cartesian,
coordinateSystem rangeCoordinateSystem_ =cartesian)

Description: Default Constructor.

domainDimension_ (input):

2 CLASSMAPPING 19

rangeDimension_ (input):
domainSpace_ (input):
rangeSpace_ (input):
domainCoordinateSystem_ (input):

rangeCoordinateSystem_ (input):

2.2.2 Dbasiclnverse

void
basiclnverse(const realArray & X,

realArray &,

realArray & rx =nullDistributedArray,
MappingParameters & params =Overture::nullMappingParameters())

Description: A derived class may optionally define this function it the class knows how to rapidly compute the inverse of the
mapping (by an analytic formula for example).

2.2.3 epsilon
real
epsilon()

Description: Return the tolerance used by the Mappings.

2.2.4 secondOrderDerivative

void

secondOrderDerivative(const Index & I,
const realArray & r,
realArray & xrr,

const int axis,
const int & rAxis)

Description: compute second derivatives of the mapping by finite differences
I (input) :

r (input) : evaulate at these points, r(l,0:domainDimension-1).

xrr (output):

axis (input): compute the derivative of x(axis,I)

rAxis (input): compute the second derivative along the direction rAxis.

2.2.5 display

void
display(const aString & label) const

Description: Write the values of the Mapping parameters to standard output.

2 CLASSMAPPING 20

2.2.6 getlndex

Index
getIndex(const realArray &,
realArray & X,
const realArray &xr,
int & base0,
int & boundo0,
int & computeMap0,
int & computeMapDerivative0)

Description: Return an Index operator for loops in the map and inverseMap functions Also compute the members:
computeMapping : TRUE or FALSE

computeMappingDerivative : TRUE or FALSE

base : base for Index

bound : bound for the Index

NOTE: do note make x ”const” so we check that this routine is called correctly from map and inverseMap

2.2.7 get
int
get(const GenericDataBase & dir, const aString & name)

Description: Get this object from a sub-directory called "name”

2.2.8 getlD

int

getID() const

Description: Get the current value for the Mapping identifier, a unique number to use when saving the Mapping in a database
file. This value is used to avoid having multiple copies of a Mapping saved in a data base file.

229 setlD

void
setID()

Description: Set a new value for the Mapping identifier, a unique number to use when saving the Mapping in a database file.
This value is used to avoid having multiple copies of a Mapping saved in a data base file.
2.2.10 getBasiclnverseOption

basiclnverseOptions
getBasiclnverseOption() const

Description:

2.2.11 getBoundaryCondition
int
getBoundaryCondition(const int side, const int axis) const

Description: Return the boundary condition code for a side of the mapping. A positive value denotes a physical boundary, 0
an interpolation boundary and a negative value a periodic direction.

side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with azis < domainDimension.

2 CLASSMAPPING 21

2.2.12 getBoundingBox

RealArray
getBoundingBox(const int & side = -1,
const int & axis = -1) const

Description: Return the bounding box for the Mapping (if sidej0 and axisj0) or the bounding box for a particular side.

side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with axis < domainDimension.

2.2.13 getBoundingBox

const BoundingBox &
getBoundingBoxTree(const int & side,
const int & axis) const

Description: Return the BoundingBox (tree) for a side of a Mapping.
side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =

(axisl,axis2,axis3)) with axis < domainDimension.

2.2.14 getCoordinateEvaluationType
int
getCoordinateEvaluationType(const coordinateSystem type) const

Description:

2.2.15 getDomainBound

Bound
getDomainBound(const int side, const int axis) const

Description:
side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with axis < domainDimension.

2.2.16 getDomainCoordinateSystem

coordinateSystem
getDomainCoordinateSystem() const

Description:

2.2.17 getDomainCoordinateSystemBound

Bound
getDomainCoordinateSystemBound(const int side, const int axis) const

Description:

side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with axis < domainDimension.

2.2.18 getDomainDimension

int

getDomainDimension() const

Description:

2 CLASSMAPPING 22

2.2.19 getDomainSpace

mappingSpace
getDomainSpace() const

Description:

2.2.20 getGridDimensions
int
getGridDimensions(const int axis) const

Description:

axis (input): axis = (0,1,2) (or axis = (axisl,axis2,axis3)) with axis < domainDimension.

2.2.21 getGrid

const realArray&
getGrid(MappingParameters & params = nullMappingParameters())

Description: Return an array that holds the values of this Mapping evaluated on an array of equally spaced points. Note that
this array may or may not contain ghost points. If 2 denotes the array that is returned, then the values that are guaranteed
to be there are

2(0:ng,0:n1,0: 9,0 : rangeDimension — 1)

where n; = getGridDimensions(i) — 1. Thus the valid values will always start with base 0 in the array. The array x
may have ghost points in which case the base will be less than 0 and the bound greater than n;.

Return value: Anarray x

Note: For efficiency the array is returned by reference. Thus you should not alter the array that is returned by this routine.

2.2.22 getlnvertible
int
getInvertible() const

Description:

2.2.23 getlsPeriodic

periodicType
getlsPeriodic(const int axis) const

Description:

axis (input): axis = (0,1,2) (or axis = (axisl,axis2,axis3)) with axis < domainDimension.

2.2.24 getMappingCoordinateSystem

mappingCoordinateSystem
getMappingCoordinateSystem() const

Description:

2 CLASSMAPPING 23

2.2.25 getName

astring
getName(const mappingltemName item) const

Description: Return a name from enum mappingltemName:

mappingName : mapping name

domainName : domain name

rangeName :

domainAxis1Name : names for coordinate axes in domain
domainAxis2Name :

domainAxis3Name :

rangeAxisIName : names for coordinate axes in range
rangeAxis2Name :

rangeAxis3Name :

item (input): return the name of this item.

2.2.26 getParameter

real
getParameter(const realParameter & param) const

Description: Return the value of a parameter used by the Mapping or the ApproximateGloballnverse or the ExactLocallnverse.

THEnonConvergenceValue : value given to ”r” value of the inverse when there is no convergence. This is currently
equal to 10. and cannot be changed.

THEnewtonToleranceFactor : convergence tolerance is this times the machine epsilon. Default=100. ?

THEnNewtonDivergenceValue : newton is deemed to have diverged if the r value is this much outside [0,1]. The default
value is .1 and so Newton is deemed to have diverged when the r value is outside the range [-.1,1.1]

THEnewtonL2Factor : extra factor for finding the closest point to a curve or surface, default=.1. This factor allows a
less strict convergence factor if the target point is far from the mapping. Decrease this value if you want a more
accurate answer. You may also have to decrease this value for mappings that have poor parameterizations.

THEboundingBoxExtensionFactor : relative amount to increase the bounding box each direction. The bounding box
can be increased in size to allow the inverse function to still converge for nearby points. The default value is .01.
Actually only the bounding boxes for the highest leaves in the bounding box tree are extended by this factor.
The bounding boxes for all other nodes (and the root) are just computed from the size of the bounding boxes of the
two leaves of the node.

THEstencilWalkBoundingBoxExtensionFactor : The stencil walk routine that finds the closest point before inversion
by Newton’s method will only find the closest point if the point lies in a box that is equal to the bounding box
extended by this factor in each direction. Default =.2

2.2.27 setParameter(int)
int
getParameter(const intParameter & param) const

Description: Set the value of a parameter used by the Mapping or the ApproximateGloballnverse or the ExactLocallnverse.

THEfindBestGuess : if true, always find the closest point, even if the point to be inverted is outside the bounding box.
Default value is false.

2 CLASSMAPPING 24

2.2.28 getPeriodVector

real
getPeriodVector(const int axis, const int direction) const

Description: For a mapping with getlsPeriodic(direction)==derivativePeriodic this routine returns the vector that determines
the shift from the ‘left’ edge to the ‘right” edge.

axis (input): axis = (0,1,2) (or axis = (axisl,axis2,axis3)) with axis < rangeDimension, are the components of the vector.

direction (input) : direction =0,1,...,domainDimension

2.2.29 getRangeBound

Bound
getRangeBound(const int side, const int axis) const

Description:

side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with azis < domainDimension.

2.2.30 getRangeCoordinateSystem

coordinateSystem
getRangeCoordinateSystem() const

Description:

2.2.31 getRangeCoordinateSystemBound

Bound
getRangeCoordinateSystemBound(const int side, const int axis) const

Description:

side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with axis < domainDimension.

2.2.32 getRangeDimension

int

getRangeDimension() const

Description:

2.2.33 getRangeSpace

mappingSpace
getRangeSpace() const

Description:

2.2.34 getShare
int
getShare(const int side, const int axis) const

Description:

side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with azis < domainDimension.

2 CLASSMAPPING 25

2.2.35 getShare

real
getSignForJacobian() const

Description: Return the sign of the jacobian, 1 (right handed coordinate system) or -1 (left handed). This may only make
sense for some mappings.
2.2.36 getTypeOfCoordinateSingularity

coordinateSingularity
getTypeOfCoordinateSingularity(const int side, const int axis) const

Description:

side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with axis < domainDimension.

2.2.37 hasACoordinateSingularity

int

hasACoordinateSingularity() const

Description: return true if the Mapping has a coordinate singularity

2.2.38 intersects

int

intersects(Mapping & map2,
const int & sidel =-1,
const int & axisl =-1,
const int & side2 =-1,
const int & axis2 =-1,
const real & tol = 0.) const

Description: Determine one mapping (or a face of the mapping) intersects another mapping (or the face of another mapping.
map?2 (input): check intersect with this Mapping.

sidel,axisl (input): Check this face of this mapping (by default check all faces).

side2,axis2 (input): Check this face of map2 (by default check all faces).

tol (input) : increase the the size of the bounding boxes by tol*(box size) when determining whether the mappings intersect.
Thus choosing a value of .1 will cause the Mappings to intersect provided they are close to each other while a value of
-.1 will cause the mappings to intersect only if they overlap sufficiently. Return value : TRUE if the face (side,axis) of
map intersects this mapping.

2.2.39 inverseMap

void
inverseMap(const realArray & X,

realArray & r,

realArray & rx =nullDistributedArray,
MappingParameters & params =Overture::nullMappingParameters())

Description: — Here is the generic inverse —-
x (input) : invert these points. The dimensions of this array will determine which points are inverted.

r (input/output) : On input this is an initial guess. If you know a reasonable initial guess then supply it, If you don’t know
an initial guess then set r=-1. for those points that you do not know a guess. If you do not know a guess then do NOT
specify some valid value like .5 since this will probably be slower than allowing the value to be automatically generated.

2 CLASSMAPPING 26

rx (output): the derivatives of the inverse mapping.

params (input) : params.computeGloballnverse : TRUE means compute a full global inverse, FALSE means only compute
a local inverse using the initial guess supplied in r

params.periodicityOfSpace :
params.periodVector :

2.2.40 inverseMapC

void
inverseMapC(const realArray & X,

const realArray &,

const realArray & rx =nullDistributedArray,
MappingParameters & params =Overture::nullMappingParameters())

Description: This version of inverseMap defines x and xr to be const (even though they really aren’t). It can be
used for some compilers (IBM:xIC) that don’t like passing views of arrays to non-const references, as in map-
ping.inverseMapC(r(l),x(I),xr(1))

2.2.41 inverseMapGrid

void
inverseMapGrid(const realArray & X,

realArray &,

realArray & rx =nullDistributedArray,
MappingParameters & params =Overture::nullMappingParameters())

Description: inverseMap a grid of points.
This version of inverseMap assumes that the input array is of the form of a grid of points:

i f rangeDi nension==1 then x can be of the form
x(al: a2, 0:d-1)
x(al:a2,0:0,0:d-1)
x(al:a2,0:0,0:0,0:d-1)

i f rangeDi nension==2 then x can be of the form
x(al: a2, bl:b2,0:d-1)
x(al: a2, bl: b2,0:0,0:d-1)

i f rangeDi nensi on==3 then x can be of the form
x(al:a2,bl:b2,cl:c2,0:d-1)

The output is in a similar form
X (input) : evaluate the inverse mapping at these points, where

r (input/output) : if r has enough space, then compute the inverse mapping. You must supply an initial guess. Choose r=-1. if
you don’t know a good guess.

rx (output) : if rx has enough space, then compute the derivatives of the inverse mapping.

params (input/output) : holds parameters for the mapping.

2.242 map

void
map(const realArray &,
realArray & X,
realArray & xr =nullDistributedArray,
MappingParameters & params =Overture::nullMappingParameters())

2 CLASSMAPPING 27

Description: Here is the transformation that defines the mapping.
r (input): r(base:bound,0:d) - evaluate the mapping at these points, where d=domainDimension-1

X (output) : -if x has enough space, x(base:bound,0:r), then compute the mapping. Here r=rangeDimension-1. Do not compute
the mapping if x is not large enough

xr (output) : - if xr has enough space, xr(base:bound,0:r,0:d), then compute the derivatives of the mapping.

params (input): - holds parameters for the mapping.

2.243 mapC

void
mapC(const realArray & r,

const realArray & X,

const realArray &xr =nullDistributedArray,
MappingParameters & params =Overture::nullMappingParameters())

Description: This version of map defines x and xr to be const (even though they really aren’t). It can be used for some
compilers (IBM:xIC) that don’t like passing views of arrays to non-const references, as in mapping.mapC(r(1),x(1),xr(1))

2.2.44 mapGrid

void
mapGrid(const realArray & r,
realArray & X,
realArray & xr =nullDistributedArray,
MappingParameters & params =Overture::nullMappingParameters())

Description: Map a grid of points.

This version of map assumes that the input array is of the form of a grid of points:

i f domai nDi nensi on==1 then r can be of the form
r(al:a2,0:d-1)
r(al:a2,0:0,0:d-1)
r(al:a2,0:0,0:0,0:d-1)

i f domai nDi nensi on==2 then r can be of the form
r(al: a2, bl: b2, 0:d-1)
r(al: a2, bl:b2,0:0,0:d-1)

i f domai nDi nensi on==3 then r can be of the form
r(al: a2, bl:b2,cl1:c2,0:d-1)

The output is in a similar form
r (input) : evaluate the mapping at these points, where
X (output) : if x has enough space, then compute the mapping.
xr (output) : if xr has enough space, then compute the derivatives of the mapping.

params (input/output) : holds parameters for the mapping.

2.2.45 mappingHasChanged
int

mappingHasChanged()
Access: protected

Description: Call this function when the mapping has changed

2 CLASSMAPPING 28

2.2.46 gridlsvalid

bool
gridlsValid() const

Description: Return true if remakeGrid=false

2.2.47 setGridlsvalid

void
setGridlsValid()

Description: Indicate that the grid is valid.

2.2.48 periodicShift
void
periodicShift(realArray & r, const Index & 1)

Description: Shift r into the interval [0.,1] if the mapping is periodic (derivative or function)

2.3 project

int

project(realArray & X,
MappingProjectionParameters & mpParams)

Purpose: Project the points x(i,0:2) onto the Mapping. This is normally used to project points onto a curve in 2D or surface in
3D (i.e. domainDimension=rangeDimension-1, aka a hyperspace of co-dimension 1).

X (input) : project these points.
mpParams (input) : This class holds parameters used by the projection algorithm.

Notes: The inverse unit square coordinates will be held in the array mpParams.getReal Array(r). If you have a good guess for
these values then you should supply this array.

If you want the derivatives you should dimension mpParams.getReal Array(xr) to be big enough and then they will be
computed.

Note: If you want the normal (or tangent to a curve) you should dimension mpParams.getReal Array(normal) to be big enough.
For curves (domainDimension==1) the normal is actually the tangent to the curve. Otherwise the normal will only make
sense if the Mapping is a curve in 2D or a surface in 3D, i.e. domainDimension=rangeDimension-1.

231 put

int

put(GenericDataBase & dir, const aString & name) const

Description: save this object to a sub-directory called "name”

2.3.2 reinitialize

void
reinitialize()

Description: Re-initialize a mapping that has changed (this will re-initialize the inverse)

2 CLASSMAPPING 29

2.3.3 setName
void
setName(const mappingltemName item, const aString & itemName)

Description: Assign a name from enum mappingltemName:

mappingName : mapping name

domainName : domain name

rangeName :

domainAxisIName : names for coordinate axes in domain
domainAxis2Name :

domainAxis3Name :

rangeAxisIName : names for coordinate axes in range
rangeAxis2Name :

rangeAxis3Name :

item (input): assign this item.

itemName (input) : name to give the item.

2.3.4 setCoordinateEvaluationType
void
setCoordinateEvaluationType(const coordinateSystem type, const int trueOrFalse)

Description:

2.3.5 setTypeOfCoordinateSingularity

void
setTypeOfCoordinateSingularity(const int side, const int axis,
const coordinateSingularity type)

Description:

side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with axis < domainDimension.

2.3.6 topologyMask

intArray &
topologyMask()

Description: Return the mask that represents a partial periodicity, such as a C-grid.
side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =

(axisl,axis2,axis3)) with axis < domainDimension.

2.3.7 getTopology

topologyEnum
getTopology(const int side, const int axis) const

Description: Return the topology. This is primarily used to represent C-grids.

side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with axis < domainDimension.

2 CLASSMAPPING 30

2.3.8 setTopology

void
setTopology(const int side, const int axis, const topologyEnum topo)

Description: Specify the topology. This is primarily used to represent C-grids.

side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with axis < domainDimension.

2.3.9 setDomainDimension

void
setDomainDimension(const int domainDimension0)

Description:

2.3.10 setRangeDimension

void
setRangeDimension(const int rangeDimension0)

Description:

2.3.11 setBasiclnverseOption

void
setBasiclnverseOption(const basiclnverseOptions option)

Description:

2.3.12 setBoundaryCondition

void
setBoundaryCondition(const int side, const int axis, const int bc0)

Description:

side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with axis < domainDimension.

2.3.13 setShare

void
setShare(const int side, const int axis, const int share0)

Description:
side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with axis < domainDimension.

2.3.14 getShare

void
setSignForJacobian(const real signForJac)

Description: Set the sign of the jacobian, 1 (right handed coordinate system) or -1 (left handed). This may only make sense
for some mappings.

signForJac (input) : should be 1. or -1.

2 CLASSMAPPING 31

2.3.15

void

setMappingCoordinateSystem

setMappingCoordinateSystem(const mappingCoordinateSystem mappingCoordinateSystem1)

Descr

2.3.16

void
setlsP

Descr
axis (i

Notes

2.3.17

void

iption:
setlsPeriodic

eriodic(const int axis, const periodicType isPeriodic0)
iption:
nput): axis = (0,1,2) (or axis = (axisl,axis2,axis3)) with axis < domainDimension.

: This routine has some side effects. It will change the boundaryConditions to be consistent with the periodicity (if
necessary).

setGridDimensions

setGridDimensions(const int axis, const int dim)

Descr

axis (i

2.3.18

void

iption:

nput): axis = (0,1,2) (or axis = (axisl,axis2,axis3)) with axis < domainDimension.

setlnvertible

setlnvertible(const int invertible0)

Descr

2.3.19

void

iption:

setParameter(real)

setParameter(const realParameter & param, const real & value)

Descr

iption: Set the value of a parameter used by the Mapping or the ApproximateGloballnverse or the ExactLocallnverse.

THEnonConvergenceValue : value given to ”r” value of the inverse when there is no convergence. This is currently
equal to 10. and cannot be changed.

THEnewtonToleranceFactor : convergence tolerance is this times the machine epsilon. Default=100. ?

THEnNewtonDivergenceValue : newton is deemed to have diverged if the r value is this much outside [0,1]. The default
value is .1 and so Newton is deemed to have diverged when the r value is outside the range [-.1,1.1]

THEnewtonL2Factor : extra factor for finding the closest point to a curve or surface, default=.1. This factor allows a
less strict convergence factor if the target point is far from the mapping. Decrease this value if you want a more
accurate answer. You may also have to decrease this value for mappings that have poor parameterizations.

THEboundingBoxExtensionFactor : relative amount to increase the bounding box each direction. The bounding box
can be increased in size to allow the inverse function to still converge for nearby points. The default value is .01.
Actually only the bounding boxes for the highest leaves in the bounding box tree are extended by this factor.
The bounding boxes for all other nodes (and the root) are just computed from the size of the bounding boxes of the
two leaves of the node.

THEstencilWalkBoundingBoxExtensionFactor : The stencil walk routine that finds the closest point before inversion
by Newton’s method will only find the closest point if the point lies in a box that is equal to the bounding box
extended by this factor in each direction. Default =.2

2 CLASSMAPPING 32

2.3.20 setParameter(int)

void
setParameter(const intParameter & param, const int & value)

Description: Set the value of a parameter used by the Mapping or the ApproximateGloballnverse or the ExactLocallnverse.

THEfindBestGuess : if true, always find the closest point, even if the point to be inverted is outside the bounding box.
Default value is false.
2.3.21 setPeriodVector

void
setPeriodVector(const int axis, const int direction, const real periodVectorComponent)

For a mapping with getlsPeriodic(direction)==derivativePeriodic this routine sets the vector that determines the shift from the
‘left’ edge to the ‘right’ edge.

axis (input): axis = (0,1,2) (or axis = (axisl,axis2,axis3)) with axis < rangeDimension are the components of the vector

direction (input) : direction =0,1,...,domainDimension

2.3.22 setDomainSpace

void
setDomainSpace(const mappingSpace domainSpace0)

Description:

2.3.23 setRangeSpace

void
setRangeSpace(const mappingSpace rangeSpace0)

Description:

2.3.24 setDomainCoordinateSystem

void
setDomainCoordinateSystem(const coordinateSystem domainCoordinateSystem0)

Description:

2.3.25 setRangeCoordinateSystem

void
setRangeCoordinateSystem(const coordinateSystem rangeCoordinateSystemQ)

Description:

2.3.26 setDomainBound

void
setDomainBound(const int side, const int axis, const Bound domainBound0)

Description:

side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with axis < domainDimension.

2 CLASSMAPPING 33

2.3.27 setRangeBound

void

setRangeBound(const int side, const int axis, const Bound rangeBound0)

Description:

side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with axis < domainDimension.

2.3.28 setDomainCoordinateSystemBound

void
setDomainCoordinateSystemBound(const int side,
const int axis,
const Bound domainCoordinateSystemBound0)

Description:
side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with axis < domainDimension.

2.3.29 setRangeCoordinateSystemBound

void
setRangeCoordinateSystemBound(const int side,
const int axis,
const Bound rangeCoordinateSystemBound0)

Description:
side, axis (input): indicates the side of the mapping, side=(0,1) (or side=(Start,End)) and axis = (0,1,2) (or axis =
(axisl,axis2,axis3)) with axis < domainDimension.

2.3.30 useRobustInverse

void
useRobustInverse(const bool trueOrFalse =TRUE)

Description: Use the robust form of the inverse.

2.3.31 sizeOf

real
sizeOf(FILE *file = NULL) const

Description: Return size of this object

2.3.32 update

bool
updateWithCommand(MappingInformation &maplnfo, const aString & command)

Description: Update one of the parameters common to all Mappings. This function is usually called by the update function
for the derived class.

returns : true if the command was understood, false otherwise

2 CLASSMAPPING 34

2.3.33 update
int
update(Mappinglnformation & maplnfo)

Description: Update parameters common to all Mappings. This function is usually called by the update function for the
derived class.

2.3.34 interactiveUpdate

int

interactiveUpdate(GenericGraphicsinterface & gi)

Description: Update Mapping parameters. This virtual function will call the update function for the derived Mapping. Use
this function if you don’t need to pass other Mapping information.

gi (input) : use this graphics interface.

2.3.35 Periodic Mappings

The possible values returned by the function get | sPer i odi c or passed to the function set | sPer i odi c are given by the
enumerator per i odi cType:

enum peri odi cType

{
not Peri odi c,
derivativePeri odi c, /] Derivative is periodic but not the function
functionPeriodic /1 Function is periodic

H

2.4 Member function map

Here is an example of an implementation of the map member function. The mapping function is implemented so that it can
evaluate the mapping for an array of points.

const int axisl
const int axis2

0;
1;

void map(real Array & r, real Array & x, real Array & xr = null Array, Mappi ngParanms & parans = nul | Par ans)

{
Index | = getlndex(r,x, xr, base, bound, conput eMap, conput eMapDeri vative);

if(conputeMap)

x(1,axisl)=2.*r (I, axisl)+xa;
x(1,axis2)=2.*r (I, axis2)+ya;
}
i f(conputeMapDerivative)
{
xr(1,axisl, axisl)=2.;
xr (1, axisl, axi s2)=0.;
xr (1, axis2,axisl)=0.;
xr (1, axis2, axi s2)=2.;

The function get | ndex returns an A++ index object that can be used when evaluating the mapping. Alternatively the
variables base and bound can be used; note that | . get Base(axi s1) =base and l.getBound(axisl)=bound. get | ndex
is described later in this section.

The default argument for the xr array is nul | Ar r ay which is a static member function of the Mapping Class.

The argument par ans is not used in this example. It is used, for example, to indicate whether the derivatives should be
returned in a different coordinate system, such as sphericalPolar. The default argument for par ans is nul | par s which is
a static member function of the MappingParams Class.

2 CLASSMAPPING 35

2.5 Member function get | ndex

The function get | ndex returns an Index object that can be used for A++ operations. The function get | ndex also assigns
values to the variables base, bound, conput eMap and conput eMapDeri vati ve. Note that base and bound are
consistent with the base and bound of the Index object returned by get | ndex. The base and bound and Index object are
determined by the first dimension of r. For example if r is dimensioned r (0: 9, 3) then base=0, and bound=9 and
get |l ndex(...)=I ndex(base, bound- base+1). The variable conmput eMap is set to TRUE if dimensions of the
array x can hold the index object. The variable conput eMapDeri vati ve is set to TRUE if dimensions of the array xr can
hold the index object.

Thus, calling map with a null array (such as Mappi ng: : nul | Array;) in the place of x (or xr) will cause the mapping
function not to evaluate x (or xr).

2.6 Member functionsi nver seMap and basi cl nver se

These member functions evaluate the inverse of the mapping for an array of points. The derivatives of the inverse mapping
can also be obtained. By default an inverse is defined for all mappings whose domainDimension < rangeDimension. This
inverse uses Newton’s method to invert the mapping. If the mapping can be inverted more quickly using another method then
you can supply your own inverse.

e i nverseMap : This is the primary function to call if you want to invert the mapping. This function will call
basi cl nver se if it has been supplied. If the mapping is a transformation from parameter space to cartesian space
(such as a mapping that defines a grid) then one normally should NOT supply this function but instead supply the
basi cl nver se function. The reason for this is that the i nver seMap must in general be able to invert the mapping
when space is periodic. However, if the mapping is a transformation from parameter space to parameter space (such as
a stretching transformation) or a transformation from cartesian space to cartesian space (such as a rotation) then one can
supply the i nver seMap function.

e basi cl nverse : This routine should be supplied if the mapping can be inverted quickly and the mapping is a
transformation from parameter space to cartesian space. The basi cl nver se function does not need to take into
account the fact that space may be periodic. To indicate that a basi cl nver se has been supplied you should use
set Basi cl nverseOpti on(canl nvert).

The i nver seMap function is automatically defined for all mappings whose domainDimension < rangeDimension.
When domainDimension < rangeDimension (for example, a curve in 2D) the inverse is defined as the closest point in the

least squares sense (Lo norm).] _ _ . _
If the mapping is a transformation from parameter space to cartesian space and the mapping can be inverted with an analytic
formula then you should write the basi ¢l nver se member function. Here is an example

const int axisl
const int axis2

0;
1

/1
// Here is the basic Inverse (this is an inverse that does not know how
/1 to deal with space being periodic)

11
voi d Squar eMappi ng: : basi cl nverse(const real Array & x, real Array & r, realArray & rx)

Index | = getlndex(x,r,rx,base, bound, conput eMap, conput eMapDerivative);

if(conputeMap)
{
r(l,axisl)=(x(l,axisl)-xa)/(xb-xa);
r(l,axis2)=(x(l,axis2)-ya)/(yb-ya);
}
if(conputeMapDerivative)
{
rx(1,axisl, axisl)=1./(xb-xa);
rx(Il,axisl, axis2)=0.;
rx(Il,axis2, axisl)=0.;
rx(l,axis2, axis2)=1./(yb-ya);

If the mapping is a transformation from parameter space to parameter space or from cartesian space to cartesian space
and the mapping can be inverted easily then you should write an i nver seMap function. Here is an example from the
Mat ri xMappi ng class:

2 CLASSMAPPING 36

voi d MatrixMappi ng::
i nverseMap(const real Array & x, real Array & r, real Array & rx, MappingParaneters & parans)

Index | = getlndex(x,r,rx,base, bound, conput eMap, conput eMapDerivative);

if((Mapping::debug/64) %2 ==1)
cout << "MatrixMapping::inverseMap - parans.isNull =" << params.isNull << endl;

if(conputeMap)
for(int i=axisl; i<domainDi nension; i++)

r(l,i)=nmatrixlnverse(i, 3); /1 holds shift
for(int j=axisl; j<rangeDi nmension; j++)

r(l,i)=r(l,i)+matrixlnverse(i,j)*x(l,j);
}
}

i f(conputeMapDerivative)
for(int i=axisl; i<domainDi nension; i++)
{

for(int j=axisl; j<rangeDi nension; j++)

rx(l,i,j)=matrixlnverse(i,j);
}
}

2.6.1 Member Functions get Nane , set Nane
These functions get or set the name for any of the items defined in the enum mappi ngl t emNane:

i tem = mappi ngC assNane
mappi ngName
domai nNane
rangeNanme
domai nAxi s1Nane
domai nAxi s2Nane
domai nAxi s3Nane
r angeAxi s1Name
rangeAxi s2Nane
rangeAxi s3Nane

These names can be used for plotting labels, for example. For example

StretchMappi ng stretch; /] create a mapping
stretch. set Nane(mappi ngNane, "nyStretchMapping"); // assign the mapping nanme

.c;).ut << " Mapping name = " << stretch. get Name(Mappi ng:: mappi ngNane) << endl;

2.7 Coordinate singularities

The get TypeO Coor di nat eSi ngul ari ty function can be used to determine if a given side of a mapping has a singu-
larity. The possible types of singularities are

enum coor di nat eSi ngul arity

{

noCoor di nat eSi ngul arity, /1 no coordinate singularity
pol arSingul arity /1 grid lines go to a point along the side

b

A pol ar Si ngul ari ty means that the grids lines converge to a point. For example, the standard representation for a
sphere would have a pol ar Si ngul ari t 'y on the two sides correspondingto ¢ = 0 and ¢ = .
Information about singularities is used by the i nver seMap.

2 CLASSMAPPING 37

2.8 Coordinate systems and coordinateEvaluationType

Some mappings will have the capability to return the mapping derivatives in different forms, corresponding to different coordi-
nate systems. Use the set Coor di nat eEval uat i onType function to indicate that a mapping can return the derivatives in
the specified form. These alternative forms of the derivatives can be used by a grid generator to remove coordinate singularities.
Here is an example taken from the Spher eMappi ng Class:

voi d SphereMappi ng: :
map(const real Array & r, real Array & x, real Array & xr, Mappi ngParaneters & parans)
Index | = getlndex(r,x,xr, base, bound, conput eMap, conput eMapDerivative);

int i;
switch (parans. coordi nat eType)

case cartesian: // mapping returned in cartesian form

if(conputeMap)

{
x(1,axisl)=radius(r(l,axis3))*cos(twoPi*r(l,axis2))*sin(Pi*r(l,axisl))+x0;
x(1,axis2)=radius(r(l,axis3))*sin(twoPi*r(l,axis2))*sin(Pi*r(l,axisl))+y0;
x(1,axis3)=radi us(r(l,axis3))*cos(Pi*r(l,axisl))+z0;

}

i f(conputeMapDerivative)

{
xr (1, axisl, axisl)=radius(r(l,axis3))*cos(twoPi*r(l,axis2))*Pi*cos(Pi*r(l,axisl));

}

br eak;

case spherical: // Mapping returned in spherical form: (phi,theta,r)
/1 derivatives: (d/d(phi), (1/sin(phi))d/d(theta), d/d(r))

if(conputeMap)

x(l,axisl)=radius(r(l,axis3))*cos(twoPi*r(l,axis2))*sin(Pi*r(l,axisl))+x0;
x(l,axis2)=radius(r(l,axis3))*sin(twoPi*r(l,axis2))*sin(Pi*r(l,axisl))+y0;
x(1,axis3)=radius(r(l,axis3))*cos(Pi*r(l,axisl))+z0;

}

i f(conputeMapDerivative)

xr (1, axisl, axi sl)=radius(r(l,axis3))*cos(twoPi*r(l,axis2))*Pi*cos(Pi*r(l,axisl));

}
br eak;

defaul t:
cerr << "Sphere::map: ERROR not inplemented for coordinateType ="

<< parans. coordi nat eType << endl;

exit(1l);

}

}

2.9 Class MappingParams

Additional parameters are passed to the map and i nver seMap functions by an object of the class Mappi ngPar ans.

2.9.1 Data Members

int isNull True if parameters have not been set

i nt periodicityCfSpace =0,1,2,3

real Array periodicityVector vector(s) for periodicity

Mappi ngWor kSpace wor kSpace work space

i nt comput ed obal | nver se TRUE by default

coor di nat eSyst em coor di nat eType evaluate mapping in this coordinate system
Appr oxi mat ed obal | nver se *appr oxi mat ed obal | nver se pointer

Exact Local I nverse *exact Local | nverse pointer

2 CLASSMAPPING 38

If space is periodic, then the parameters peri odi ci t yOf Space and peri odi ci t yVect or must be set in calls to
i nver seMap. Here is an example:

#i ncl ude "Mappi ng. h"
#i ncl ude "Square. h"

void main()

real Array r1(10,2), x1(10,2), xr1(10,2,2);
real Array r2(10,2), x2(10,2), rx2(10,2,2);

Squar eMappi ng square();

Mappi ngPar anet ers peri odi cPar ans;

/1 here is where we set the periodicity of Space, this should be consistent
/1 with the periodicity of ALL nappi ngs

peri odi cPar ans. peri odi ci t yO Space=1;

peri odi cPar ans. peri odi ci tyVector (axi s1, axi s1)=2.; // set vector to (2,0)
peri odi cPar ans. peri odi ci t yVect or (axi s2, axi s1) =0. ;

cout << "=============Periodic i n Space=============" << endl;
cout << " ---Call square map with an array of values:" << endl;
for(i=0; i<10; i++)

{

ri(i,axisl)=i/9.;
ri(i,axis2)=i/9.;
}
square.map(rl1,x1,xrl); // get x1 and xrl at an array of points
for(i=0; i<10; i++)
printf(" Square: r= (9. 3f,%.3f) x = (%.4f,%.4f)\n",
ri(i,axisl),rl(i,axis2),x1(i,axisl),x1(i,axis2));

cout << " ---Call square inverseMap with an array of values:" << endl;
for(i=0; i<10; i++)
{

x2(i,axisl)=1.5*x1(i,axisl);
x2(i,axis2)=x1(i,axis2);

r2=1.; // initial guess
square. i nverseMap(x2,r2,rx2, peri odi cParans);
for(i=0; i<10; i++)
printf(" Square: x= (9%.3f,%.3f) r = (%.4f,%.4f)\n",
x2(i,axisl),x2(i,axis2),r2(i,axisl),r2(i,axis2));

The i nver seMap member function of the ComposeMappi ng class will use the conput e obal | nver se parame-
ter.

2.10 Class ApproximateGloballnverse

This class is used to define an inverse!approximate global inverse of a mapping. The approximate global inverse computes an
approximate inverse to the mapping. This approximate inverse should be good enough so that a Newton iteration will converge.

Each mapping contains a pointer to an ApproximateGloballnverse, called appr oxi mat ed obal | nver se. This Ap-
proximateGloballnverse is used by the i nver seMap member function.

We now describe the default implementation for the ApproximateGloballnverse. The default approximate global inverse
has a discrete grid that contains values of the mapping. The inverse finds the closest point on this grid. The number of points
on the grid can be set by the Mapping member function set Gri dDi nensi ons or the actual grid to be used can be specified
with the ApproximateGloballnverse member function set Gi d.

2.10.1 constructor
ApproximateGloballnverse(Mapping & map0)

Description: Build an approximate inverse to go with a given mapping.

2 CLASSMAPPING

2.10.2 setGrid
// void

I

39

/ IDescription: // Give a grid that can be used for global search routines // The grid is assumed to have been assigned
with values of the // mapping. The grid is assumed to be always declared as a // four-dimensional A++ array,

grid(axisl,axis2,axis3,rangeDimension). //
//grid0 (input) : use this grid.
/ IgridindexRange : index bounds for the sides of the grids //

2.10.3 getGrid

const realArray &
getGrid() const

Description: return the grid used for the inverse

2.10.4 getParameter

real
getParameter(const realParameter & param) const

Description: Return the value of a parameter.

param (input) : One of Mappi ngPar anet er s: : THEboundi ngBoxExt ensi onFact or
Mappi ngPar amet er s: : THEst enci | .l kBoundi ngBoxExt ensi onFact or.

2.10.5 getParameter
int
getParameter(const intParameter & param) const

Description: Return the value of a parameter.

param (input) : One of Mappi ngPar anet er s: : THEf i ndBest Guess

2.10.6 setParameter

void
setParameter(const realParameter & param, const real & value)

Description: Set the value of a parameter.

param (input) : One of Mappi ngPar anet er s: : THEboundi ngBoxExt ensi onFact or
Mappi ngPar amet er s: : THEst enci | .l kBoundi ngBoxExt ensi onFact or.

value (input) : value for the parameter.

2.10.7 setParameter(int)

void
setParameter(const intParameter & param, const int & value)

Description: Set the value of a parameter.

param (input) : One of Mappi ngPar anet er s: : THEboundi ngBoxExt ensi onFact or
Mappi ngPar anet er s: : THEst enci | WAl kBoundi ngBoxExt ensi onFact or .

value (input) : value for the parameter.

or

or

or

2 CLASSMAPPING 40

2.10.8 useRobustlnverse
void
useRobustInverse(const bool trueOrFalse =TRUE)

Description: If TRUE use the more robust approximate inverse that will work with highly stretched grids where the closest
grid point x, to a given point may be many cells away from the cell containing the point x.
2.10.9 usingRobustlnverse

bool
usingRobustInverse() const

Description: Return TRUE if using the more robust approximate inverse that will work with highly stretched grids where the
closest grid point X, to a given point may be many cells away from the cell containing the point x.
2.10.10 sizeOf

real
sizeOf(FILE *file = NULL) const

Description: Return size of this object

2.10.11 get
int
get(const GenericDataBase & dir, const aString & name)

Description: Get this object from a sub-directory called "name”

2.10.12 put
int
put(GenericDataBase & dir, const aString & name) const

Description: save this object to a sub-directory called "name”

2.10.13 inverse

void

inverse(const realArray & X,
realArray & r,
realArray & rx,
MappingWorkSpace & workSpace,
MappingParameters & params)

Purpose: Find an approximate inverse of the mapping; this approximate inverse should be good enough so that Newton will
converge

Method: 1. If space is periodic (e.g. if the grids all live on a background square which has one or more periodic edges)
then we need to worry about values of x that are outside the basic periodic region. These points may have periodic
images that lie inside the periodic region. We thus add new points to the list that are the periodic images that lie
inside the basic square. ***NOTE*** space periodic rarley occurs and probably hasn’t been tested enough.

periodi c
i mage

initial point to invert

2 CLASSMAPPING 41

2. For all points to invert, find the closest point on the reference grid that goes with the mapping. This grid
is usually just the grid that is used when plotting the mapping. This step is performed by the function
fi ndNear est Gi dPoi nt

Notes: The results produced by this routine are saved in the object workSpace.
workSpace.x0 (output) : list of points to invert with possible extra points if space is periodic.
workSpace.r0 (output) : unit square coordinates of the closest point.

workSpace.10 (output) : Index object that demarks the active points in x0 and r0.

workSpace.index0 (output) : indirect addressing array that points back to the original r array; used when there are extra points
added for periodicity in space.

workSpace.index0lsSequential (output) : if TRUE then space is periodic and the index0 indirect addressing array should be
used when storing results back in the user arrays r and rx.

2.10.14 initializeBoundingBoxTrees
void
initializeBoundingBoxTrees()
Description: Assign the binary tree’s of Bounding Boxes
For domainDimension==1 bounding boxes are made for the whole mapping (curve in 1,2 or 3d)

For domainDimension¢1 a binary tree is created for each side Any box that has too many grid points in it is subdivided
into two

boundi ngBoxTr ee[si de] [axi s]

childi chi | d2
| I

S oo +
childi child2 child1l chil d2

Each box contai ns:
domai nBound(2, domai nDi mensi on) : index bounds for box
rangeBound(2, r angeDi nensi on) : bounds of box in physical space

Note that these Bounding Box trees will be automatically (recursively) deleted when the destructor is called for bound-
ingBoxTree[2][3]
2.10.15 findNearestGridPoint

void
findNearestGridPoint(const int basel, const int boundl, realArray & X, realArray & r)

Description: Find the nearest grid point by a ‘stencil walk’ and possibly a global search over the boundary
For each point x(i,.), i=basel,...,boundl, find the index of the closest point on the boundary r(i,.).

1. Fora 1D grid start at the initial guess and look to the left or to the right depending on whether the distance decreases
to the left or right.

2 CLASSMAPPING 42

2. For a 2D grid first do a local search, use the index arrays to indicate which points in the square to check (not
all points need be searched as they would have been done on the previous checks). If the local search ends on a
boundary then do a global search of all boundary points, followed by another local search.

3. For a 3D grid proceed as in 2 but use different index arrays

2.10.16 binarySearchOverBoundary

void
binarySearchOverBoundary(real x[3],
real & minimumDistance,

int iv[3],
int side = -1,
int axis = -1)

Description: Binary Search over the boundary.
For point x find the index of the closest point on the boundary iv iv should be given a value on input, current closest point
For curves or surfaces we search the entire surface for the closest point

X (input) : point to search for.

minimumDistance (input/output) : NOTE that this distance” is the SQUARE of the L2 norm. On input : find a point with
minimum distance less than this value. On output, if minimumDistance is less than the input value then this will be the
new minimum distance and iv will hold the point on the boundary that is closest.

iv (output) : Closest boundary ONLY IF a point is found that is closer than the input value of minimumDistance.

side,axis (input) : optionally specify to only search this face.

2.10.17 binarySearchOverBoundary

void
robustBinarySearchOverBoundary(real x[3],
real & minimumDistance,
int iv[3],
int side,
int axis)

Description: Robust Binary Search over the boundary. ** use this for a thin wing or c-grid ***

Method: Search for local minima in the top two bounding boxes.
For point x find the index of the closest point on the boundary iv iv should be given a value on input, current closest point
For curves or surfaces we search the entire surface for the closest point

X (input) : point to search for.

minimumDistance (input/output) : NOTE that this "distance” is the SQUARE of the L2 norm. On input : find a point with
minimum distance less than this value. On output, if minimumDistance is less than the input value then this will be the
new minimum distance and iv will hold the point on the boundary that is closest.

iv (output) : Closest boundary ONLY IF a point is found that is closer than the input value of minimumDistance.

side,axis (input) : optionally specify to only search this face.

2 CLASSMAPPING 43

2.10.18 findNearestCell
int
findNearestCell(real x[3],
intiv[3],
real & minimumDistance)

Description: Find the nearest grid cell by a ‘stencil walk’ . This search technique may be needed for highly stretched grids
since the closest grid point to X may be many cells away.

iv (input/output) : on input, the initial guess for the closest cell. On output the nearest cell (locally, may end on a boundary).

minimumDistance (output): return O if x is inside the cell iv. Otherwise the minimum distance is NOT computed by this
routine (for efficiency) since the algorithm does not really require it.

Return values: 0 point x is inside the cell.
1 stencil walk has reached a boundary and the point is apparently not inside the cell.

2.10.19 countCrossingsWithPolygon

void
countCrossingsWithPolygon(const realArray & X,
IntegerArray & crossings,
const int & side_ =Start,
const int & axis_ =axisl,
realArray & xCross = Overture::nullRealDistributedArray(),
const IntegerArray & mask = Overture::nullintArray(),
const unsigned int & maskBit = UINT_MAX,
const int & maskRatiol =1,
const int & maskRatio2 =1,
const int & maskRatio3 =1)

Description: Count the number of times that the ray starting from position xv=(x,y) and extending to y=+ infinity, crosses the
polygon approximation to the curve (domainDimensionj=1) or the triangulated approximation to the face of the mapping
(domainDimension==3).

x(1,0: r-1) (input): set of points to check

crossings(l) (input/ouput): number of crossings for each point. **NOTE** this function will add on to the current values in
this array, thus you should set this to zero on the first call, or subsequent calls, depending on your application.

side,axis_ (input): For domainDimension1 these will indicate the side (domainDimension==2) or the face (domainDimen-
sion==3) to check. For domainDimension==1 these values are ignored.

xCross (input/output) : If this argument is supplied then we store each crossing point in ths array as xCross(i,0:2r,cross)
where cross=0,1,...,crossings(i)-1, r=rangeDimension. We save [X,y,i1,i2] if rangeDimension==2 and [X,y,z,i1,i2,i3] if
rangeDimension==3. (i1,i2,i3) denotes the lower left corner of the cell that holds the intersection.

mask (input): optional arg that is used to mask out certain parts of the boundary. If this arg is given then ALL corners of a cell
must have "mask(i1,i2,i3) & maskBit” in order that a ray crossing that cell to count as an actual crossing. In other words
the valid points on the boundary are marked with "mask(i1,i2,i3) & maskBit”.

maskBit (input) : by default the mask bit is UINT_MAX == 2™ -1 (all bits on) so that invalid points would have
mask(i1,i2,i3)==

maskRatiol, maskratio2,maskRatio3 (input) : parameters from multigrid. These are the ratios of the current grid spacing to
the finest grid spacing. (assuming that the grid associated with this mapping is the finest grid!).

Return value : number of times the ray crosses the polygon. For a closed curve there will be an odd number of crossings if
the point is inside the polygon and and even number of crossings if the point is outside the polygon.

NOTE: Ifapoint lies exactly on a vertical line segment then this routine will give zero crossings for this segment (it may cross
other segments in which case the crossing count may be non-zero)

3 INVERTING THE MAPPING BY NEWTON’'S METHOD 44

2.11 Class ExactLocallnverse

This class defines an exact inverse for a mapping, given a good initial guess.

Each mapping contains a pointer to an ExactLocallnverse, called exact Local | nver se. This ExactLocallnverse is used
by the i nver seMap member function.

The default ExactLocallnverse uses the Newton algorithm to invert the mapping (if the mapping is invertible) or uses
Newton to find the closest point (L2-norm) between a point and a surface or curve.

3 Inverting the Mapping by Newton’s Method

3.1 The case of a square Jacobian

When the donai nDi nensi on equals the r angeDi nensi on we use a fairly standard Newton’s method, with some damping
if the corrections are too large. Special considerations are required if the Jacobian (The Newton matrix) is singular; this could
occur at a polar singularity, for example.

3.2 The case of a non-square Jacobian

When the domai nDi mensi on is not equal to the r angeDi nensi on, such a a curve or surface, then we must define what
is meant by inverting the Mapping. This amounts to finding some ’closest’ point of the Mapping.
Denote the transformation defining the Mapping by

X = S(Tl,TQ)

where, to be specific, we consider the case of a surface in 3D.

3.2.1 Method 1 : Least Squares

Given a point x not on the surface, the equation x = S(r) will have no solution. We need to define a best guess for the solution.
By Taylor series
x=Sr" N+ V,Sr" — ") + ...

Linearizing the equation (Netwon’s method) gives the over-determined system

VeS(r" —r") =x - S(x")
or AAr = Ax

of 3 equations for the two unknowns in Ar. We can “solve’ this over-determined system by least squares
ATAAr = AT Ax
or equivalently using the QR algorithm
Rr =QTAx

to obtain the new guess r™. On convergence the residual Ax will be orthogonal to the tangent vectors on the surface, A7 Ax =
0, and thus the residual will be in the direction of the surface normal.

Aside: In the hyperbolic grid generation context there is another way to define the inverse. The problem is to find a point x
that is a given distance, d, from a point x° and lying on some plane n - (x — x°) = 0. In this case we have a system of three
equations for three unknowns,

x = S(r)
x = x" + d(t; cos(0) + tasin(h))

Here t,,, are unit orthgonal tangent vectors on the plane and @ is the extra unknown. This system may be faster to solve than
the least squares approach (?)

3 INVERTING THE MAPPING BY NEWTON’'S METHOD

3.2.2 0Old way: minimize [, distance

Minimize the [, distance (squared) between the point and the surface,
ming(r) where g =[x —S(r)|* = (x—-S)T(x—S)
To do this we solve V,.g = 0 (which could also find the maximum distance),

h(r) = V,g = —2V,S8T(x - S) =0

Zamsk(a:k —S)=0 fori=0,1
k

This equation h(r) = 0 is solved by Newton’s method,

V.h(r® —r"71) = —h(r" 1)
Vih = H(x = 8) — || V.S||?

Hij = Zamarjsk(wk - Sk) - (@Sk)Q
k
One disadvantage of this approach is that it requires the second derivative of the Mapping.

3.2.3 constructor

ExactLocallnverse(Mapping & map0)

Description: Build an ExactLocallnverse from a Mapping.

3.2.4 getParameter

real
getParameter(const realParameter & param) const

Description: Return the value of a parameter.

param (input) : one of THEnonConver genceVal ue, THEnewt onTol er anceFact or,
THEnewt onDi ver genceVal ue or newt onL2Fact or from the enum Mappi ngPar aret er s.

3.2.5 setParameter

void
setParameter(const realParameter & param, const real & value)

Description: Set the vaule of a parameter.

param (input) : one of THEnonConver genceVal ue, THEnewt onTol er anceFact or,
THEnewt onDi ver genceVal ue or THEnewt onL2Fact or from the enum Mappi ngPar anet er s.

value (input) : value to assign.

3.2.6 sizeOf

real
sizeOf(FILE *file = NULL) const

Description: Return size of this object

45

or

or

3 INVERTING THE MAPPING BY NEWTON’'S METHOD 46

3.2.7 reinitialize

void
reinitialize()

Description: This will mark ExactLocallnverse as being in need of initialization. The actual call to initialize will occur when
the inverse is actually used.

3.2.8 get
int
get(const GenericDataBase & dir, const aString & name)

Description: Get this object from a sub-directory called "name”

3.29 put
int
put(GenericDataBase & dir, const aString & name) const

Description: save this object to a sub-directory called "name”

3.2.10 initialize

void
initialize()

Description: Initialize.

3.2.11 compressConvergedPoints
int
compressConvergedPoints(Index & I,
realArray & X,
realArray &,
realArray & ry,
realArray & det,
intArray & status,
const realArray & x1,
realArray & rl,
realArray & rx1,
MappingWorkSpace & workSpace,
const int computeGloballnverse)

Description: Remove points that have converged or diverged so that we will only iterate on the smaller number of points that
haven’t converged,

3.2.12 inverse

void

inverse(const realArray & x1,
realArray & ri,
realArray & rx1,
MappingWorkSpace & workSpace,
const int computeGloballnverse)

Description: Compute the inverse of the mapping using Newton’s method. The initial guess must be good enough for Newton
to converge

x1,r1,rx1 (input/output) :

3 INVERTING THE MAPPING BY NEWTON’'S METHOD 47

workSpace (input) :

computeGloballnverse (input): TRUE means that the approximateGlobal inverse routine was called previous to this call. In
this case we look for information in the workSpace. FALSE means that the approximateGloballnverse was not called
before this call.

3.3 Registering Mappings and Reading Generic Mappings from the DataBase

In this section we describe how a mapping can be read from a database file and contructed even when the function constructing
the mapping does not know the (derived) class to which the mapping belongs. For example, this situtaion occurs when a
container class holds a pointer to a Mapping. The pointer is of type Mappi ng* but the pointer may point to a derived class
such as Squar eMappi ng. Suppose the container class is saved to a database file with the function Cont ai ner: : put.
When it is read back in again with Cont ai ner : : get the get function will not know how to “get” the mapping.

To solve this problem each mapping class has a member function make (a virtual member function of the base class) that
look likes

Mappi ng *Squar eMappi ng: : make(const String & mappi ngCl assNanme)
{ /1 Make a new mapping if the mappi ngC assNane is the nane of this d ass
Mappi ng *retval =0;
i f(mappi ngd assNanme==cl assNane)
retval = new Squar eMappi ng();
return retval;

}

The function make creates a new mapping of it’s own class provided that the String passed to nake is the name of it’s

class.

The Mapping Class contains a static member that is a list of pointers to Mappings, mappi ngLi st . Each member of the
list points to an instance of a different derived mapping Class. All possible Mapping Class’s that may be read from the database
should have a member in mappi ngLi st . Here, for example, is how to add members to the mappi ngLi st :

CircleMVapping circle;
Stret chMappi ng stretch;

Mappi ng: : mappi ngLi st. add(&circle);
Mappi ng: : mappi ngLi st. add(&stretch);

The makeMappi ng member function of the Mapping Class can be used to make a Mapping corresponding to a given class
name. The makeMappi ng function takes as input the name of a class that it should try to make. For example, the argument
to makeMappi ng may be the String cl assName==" Squar eMappi ng" . The makeMappi ng function goes through it’s
list of mappings, calling the make member function of each mapping, until it finds the mapping class that is able to make a
" Squar eMappi ng".

/1 Get a mapping fromthe database

/1 This routine |ooks through the list of mapping O ass’s

/1 that have been placed on the nappingList and tries to

11 find one that knows how to make a mappi ng whose nane

/1 is equal to the input argument classNane

/1

/1 Input:

11 const String & cl assNane

/1 : name of the mapping class to get fromthe database file
/1 Dir dir

11 : directory on the database where the mapping is stored
11 const String & nane

I : the database nane for the mapping

/1

/1

Mappi ng* Mappi ng: : makeMappi ng(const String & cl assNanme)
{ /!l Try to construct a nmapping
Mappi ng *retval = 0;
for(Item *ptr=nappi ngList.start; ptr; ptr=ptr->next)
if(retval = ptr->val ->make(classNane)) break;
return retval;

3 INVERTING THE MAPPING BY NEWTON’'S METHOD 48

Here is the definition of a container class that calls makeMappi ng in order to construct a mapping. The container class has
a Eointer to a generic Mapping. There is no trouble saving the mapping to a database with the put member function. However
when it reads the mapping back from the database it must be able to construct an instance of the appropriate derived class; this
is done by makeMappi ng. Note that we assume that each Mapping class has a data member St ri ng cl assNane that
holds the name of the class.

cl ass Cont ai ner
{
public:
Mappi ng *mapPoi nteer;

void get(const Dir &dir, const String & nane)

/1 Make a new directory unless nane="."
Dir subDir = name=="." ? dir : dir.findDir(nane);

/1 Look for the classNane of the Mapping:

Dir mappingDir = subbDir.findDr("contai nedVappi ng");
String mappi ngd assNane;

mappi ngDi r. get (mappi ngCl assNan®, "cl assNane");

/1 Make an instance of the appropriate derived Mapping cl ass
mapPoi nter = Mappi ng: : makeMappi ng(mappi ngC assNane) ;

get Map=TRUE;

mapPoi nt er - >get (subDi r, " cont ai nedMappi ng"); /1 get the mapping

}
void put(const Dir & dir, const String & name)
{
/] destory the directory if it exists
if(!dir.locateDir(name).isNull())
dir.destroy(name, " R');
Dir subDir = name=="." ? dir : dir.createD r(nane);
mapPoi nt er - >put (subDir, "cont ai nedMappi ng"); // save the nappi ng
}

4 ANNULUSMAPPING 49

4 AnnulusMapping
This Mapping defines an annulus in two or three space dimensions

6 = 2m(0o +ri(61 — o))
X(T‘l, 7’2) = (RQ =+) (R1 — Ro))(COS(Q) + Zo, SIH(Q) + Yo, Zo)

By default the annulus is parameterized with a left-handed coordinate system. You can make the system right handed by
choosing the out er Radi us to be less than the i nner Radi us.

By default the annulus is two dimensional. To make a three dimensional annulus use the set RangeDi mensi on()
function or use the set Ori gi n(x0, y0, z0) function with a non-zero value of z0.

outerRadius

erRadius

startAngle*twoPi

endAngle*twoPi

Figure 2: The AnnulusMapping defines an annulus

4.1 Constructor

AnnulusMapping(const real innerRadius_ =.5,
const real outerRadius_ =1.,
const real x0_=0.,
const real yO_=0.,
const real startAngle_=0.,
const real endAngle_=1.)

Purpose: Create an annulus.
innerRadius,outerRadius (input): inner and outer radii.
x0,y0 (input): centre for the annulus.

startAngle, endAngle (input): The initial and final "angle” (in the range [0,1]).

4 ANNULUSMAPPING 50

4.2 setRadii

int

setRadii(const real & innerRadius_=.5,
const real & outerRadius_=1.)

Purpose: Define the radii of the annulus.
innerRadius,outerRadius (input): inner and outer radii of the annulus. There is NO restriction that innerRadius <

outerRadius.

4.3 setOrigin
int
setOrigin(const real & x0_=0.,

const real & y0_=0.,
const real & z0_=0.)

Purpose: Set the centre of the annulus. Choosing a non-zero value for z0 will cause the r angeDi nensi on of the Mapping
to become 3.

x0,y0,z0 (input): centre of the annulus.

4.4 setAngleBounds

int

setAngleBounds(const real & startAngle_=0.,
const real & endAngle_=1.)

Purpose: Set the angular bounds on the annulus.

startAngle, endAngle (input): The initial and final “angle” (in the range [0,1]).

Annulus

1.00

%2

075k
050
025}
000}
-0.25 r

—050f

-0.75

-075 -0.50 -025 0.00 0.25 0.50 0.75 1.00
x1

~1.00 L

Figure 3: A mapping for a partial annulus.

5 AIRFOILMAPPING: CREATE SOME AIRFOIL RELATED GRIDS OR CURVES

5 AirfoilMapping: create some airfoil related grids or curves

5.1 NACA airfoils
The NACA 4 digit series airfoils (such as the NACA0012) are defined by

Zyu(r) = (r — ye(r) sin())c upper surface
Yu (1) = (ye(r) + ye(r) cos(8))c upper surface
xy(r) = (r+ ye(r) sin(0))c lower surface
yi(r) = (ye(r) — ye(r) cos(8))c lower surface

where c is the chord length. The camber line, v, is defined by

1
Ye(r) = Cmaxx—%(ZiUﬂ“ - 7“2) for0 <r <z

1
Ye(r) = Cmaxm

x1 = position of the maximum camber

(1 = 221) + 2z — %) forz; <r<1

and the thickness is defined by
y:(r) = 56(0.29690+/r — 0.12600r — 0.35160r* + .28430r° — 0.101507*)
where
0 = thickness/chord
The NACA[c][p][tc] airfoil is defined by:
¢ maximum camber/chord x 100 (¢ax x 100).
p position of maximum camber/chord x10 (z; x 10).
tc thickness/Chord x100 (6 x 100).
Thus the NACA0012 has ¢pax = 0, 21 = 0and 6 = .12.

5.2 Joukowsky Airfoil
The Joukowsky airfoil is defined by

z=x+iy=w+ % z and w are complex numbers
w = ae' + ide”
0 = 27rg
The parameters a, d, ¢ in the definition have the following approximate properties,
a : <=1, closer to 1 implies sharper trailing edge.
d : bigger d implies larger camber.

& : bigger ¢ implies greater asymmetry between leading and trailing edges.

5.3 Member function descriptions
5.3.1 Constructor

AirfoilMapping(const Airfoil Types & airfoil Type._,
const real xa = -1.5,
const real xb = 1.5,
const real ya=0.,
const real yb =2.)

51

5 AIRFOILMAPPING: CREATE SOME AIRFOIL RELATED GRIDS OR CURVES

Description: Create a mapping for an airfoil.
Notes: An airfoil mapping can be made from oneof the following (enum AirfoilTypes)

arc : grid with a bump on the bottom that is an arc of a circle.
sinusoid : grid with a bump on the bottom that is an sinusoid.
diamond : grid with a bump on the bottom that is a diamond.
naca : a curve that is one of the NACA 4 digit airfoils.
joukowsky : a curve defining a Joukowsky airfoil.

airfoil Type_ (input): an airfoil type from the above choices.

xa,xb,ya,yb (input) : boundaries of the bounding box (not used for naca airfoils).

5.3.2 setBoxBounds

int

setBoxBounds(const real xa =-1.5,
const real xb =1.5,

const real ya =0.,
const real yb =2.)

Description: set bounds on the rectangle that the airfoil sits in

xa,xb,ya,yb (input) : boundaries of the bounding box (not used for naca airfoils).

5.3.3 setParameters

int

setParameters(const Airfoil Types & airfoil Type._,
const real & chord_=1.,
const real & thicknessToChordRatio_=.1,
const real & maximumCamber_=0.,
const real & positionOfMaximumCamber_=0.,
const real & trailingEdgeEpsilon_=.02)

Description: Create a mapping for an airfoil.
Notes: An airfoil mapping can be made from oneof the following (enum Airfoil Types)

arc : grid with a bump on the bottom that is an arc of a circle.
sinusoid : grid with a bump on the bottom that is an sinusoid.
diamond : grid with a bump on the bottom that is a diamond.
naca : acurve that is one of the NACA 4 digit airfoils.

joukowsky : Joukowsky airfoil. The other parameters in the argument list do not apply in this case.

set JoukowskyPar anet er s function instead.
airfoil Type_ (input): an airfoil type from the above choices.
chord_ (input): length of the chord.
thicknessToChordRatio_ (input): thickness to chord ratio.
maximumCamber _ (input): maximum camber
positionOfMaximumCamber_ (input): position of maximum camber

trailingEdgeEpsilon_ (input) : parameter for rounding the trailing edge.

52

Use the

5 AIRFOILMAPPING: CREATE SOME AIRFOIL RELATED GRIDS OR CURVES 53

5.3.4 setJoukowskyParameters

int

setJoukowskyParameters(const real & a, const real & d, const real & delta)

Description: Set parameters for the Joukowsky airfoil.

a,d,delta : see the documentation for a desciption of these.

5.4 Examples

airfoil

200

o
B

175 H

1.50 H

1.25 H ENNEANERNN

1.00 F

075 H

0.50 H [

I

0,00 Chl WL LU IR I nmn MmN
—1.50 —1.00 —0.50 0.00 0.50 1.00 1.50

Airfoil grid created with ai r f oi | Type=ar ¢

airfoil

200

xZ

175 H

1.50 H

125 H L

1.00 F el e

075 H

0.50 H EEE

0.25 H

000 ELLL LT LT L L NEEREN
~1.50 —1.00 —050 0.00 0.50 1.00 150
x1

Airfoil grid created with ai r f oi | Type=si nusoi d

airfoil

200

X2

1.50 H

125 H HENRSSRNRN

1.00 F N

075 H

0255 L1 Baas

0,00 Ehld . L L mn
—1.50 —1.00 —0.50 0.00 0.50 1.00 1.50

Airfoil grid created with ai r f oi | Type=di anond

airfoil NACAQO12

0250 [
BN
R I Ly I J
0.00 025 0.50 075 100

x1

NACAO0012 airfoil created with ai r f oi | Type=naca

6 BOXMAPPING

6 BoxMapping

This Mapping defines a box in three-dimensions:
x(r1,72,73) = (Ta +71(T6 — Ta) Ya + 72(Yo — Ya)s 2o + 73(26 — 2a))

The box can also be rotated around any one of the coordinate directions.

6.1 Member functions

6.2 constructor

BoxMapping(
const real xMin, const real xMax,
const real yMin, const real yMax,
const real zMin, const real zMax)

Description: Build a rectangular box in 3D. The box can also be rotated around one the coordinate directions.
xMin,xMax : minimum and maximum values for x(xAxis)
yMin,yMax : minimum and maximum values for y(yAxis)

zMin,zMax : minimum and maximum values for z(zAxis)

6.3 rotate
int
rotate(const real angle,
const int axisOfRotation = 2,
const real x0 = 0.,
const real y0 = 0.,
const real z0 =0.)

Description: Rotate the box around a coordinate direction.
angle (input) : angle in degrees.

xisOfRotation (input) : 0,1 or 2.

x0,y0,z0 (input) : rotate about this point.

6.4 getVertices

int

getVertices(real & xMin, real & xMax, real & yMin, real & yMax, real & zMin, real & zMax) const
Purpose: Return the bounds on the box.

xMin, xMax, yMin, yMax, zMin, zMax (output) : bounds on the box.

6.5 set\ertices

int

set\Vertices(const real & xMin =0.,
const real & xMax =1.,
const real & yMin =0.,
const real & yMax =1.,
const real & zMin =0.,
const real & zMax =1.)

Purpose: Set the bounds on the box.

xMin, xMax, yMin, yMax, zMin, zMax (input) : bounds on the box.

7 CIRCLEMAPPING (ELLIPSE TOO) 55

7 CircleMapping (ellipse too)

This mapping defines a circle or ellipse in two or three dimensions:
x(r) = (acos(27r) + o, bsin(27r) 4 yo)
x(r) = (acos(2mr) + xg, bsin(27r) + Yo, 20)

on a constant z — plane. A partial arc can also be defined (see the figure with AnnulusMapping).

7.1 Constructor(2D)

CircleMapping(const real & x_=0.,
const real & y_=0.,
const real & a_=1.,
const real & b_=a_,
const real & startTheta_=0.,
const real & endTheta_=1.)

Description: Define a circle or ellipse (or an arc there-of) in 2D, semi-axes a, and b, angle from startTheta*twoPi to end-
Theta*twoPi

x(I,axisl)=a*cos(thetaFactor*(r(l, axisl)-startTheta)) +xa;
x(1,axi s2)=b*sin(thetaFactor*(r (I, axisl)-startTheta)) +ya;

X_ (input) : x coordinate of center

y_ (input) : y coordinate of center

a_ (input) : length of semi axis along x (radius for a circle)
b_ (input) : length of semi axis along y (radius for a circle)
startTheta_ (input): starting angle (in units of radians/(2 pi))

endTheta_ (input): ending angle (in units of radians/(2 pi))
7.2 Constructor(3D)

CircleMapping(const real & x_,
const real & y_,
constreal & z_,
const real & a_,
const real & b_,
const real & startTheta.,
const real & endTheta_)

Description: Define a circle or ellipse (or an arc there-of) in 3D (constant z), semi-axes a, and b, angle from startTheta*twoPi
to endTheta*twoPi

x(1,axi sl)=a*cos(thetaFactor*(r (I, axisl)-startTheta)) +xa;
x(1,axi s2)=b*sin(thetaFactor*(r (I, axisl)-startTheta)) +ya;
x(Il, axi s3) =za;

X_ (input) : x coordinate of center

y_ (input) : y coordinate of center

7 CIRCLEMAPPING (ELLIPSE TOO)

z_(input) : z coordinate of center

a_ (input) : length of semi axis along x (radius for a circle)
b_ (input) : length of semi axis along y (radius for a circle)
startTheta_ (input): starting angle (in units of radians/(2 pi))

endTheta_ (input): ending angle (in units of radians/(2 pi))

56

8 COMPOSEMAPPING: COMPOSE TWO MAPPINGS 57

8 ComposeMapping: compose two mappings

This mapping can be used to create a new mapping by composing two existing mappings.

8.1 Constructors

Mappi ng() Default constructor
Mappi ng(Mappi ng & mapa, Mapping & mapb) create a mapping, mapb o mapa

8.2 Member Functions

void map(real Array & r, real Array & x, real Arreagalude dre mapping and derivative

void inverseMap(real Array & X, real Array & r, evaadtAtheayvetsa mafping and derivative
void get(const Dir & dir, const String & name)etfrom a database file

void put(const Dir & dir, const String & name)uttoadatabase file

Here is an example of the use of the ConposeMappi ng class. The composed mapping consists of a mapping for a cube
followed by a rotation mapping.

#i ncl ude "maputil.h"

void main()

{
BoxMappi ng box(0.,.5,0.,.5,0.,.5) ; /1 Define grid to be a cube
Mat ri xMappi ng rotation ; /1 Define a matrix mapping
rotation.rotate(zAxis, Pi/2.); /'l rotate about z axis
ConposeMappi ng rot at edBox(box,rotation); /1 define a mapping by conposition

r(axisl)=.5; r(axis2)=.5; r(axis3)=.5;
r ot at edBox. map(r, X, xr); /'l eval uate the napping

9 COMPOSITESURFACE: DEFINE A SURFACE FORMED FROM MANY SUB-SURFACES 58

9 CompositeSurface: define a surface formed from many sub-surfaces

***** This class is still under development ******

The Conposi t eSur f ace Mapping is used to represent a surface that is formed from a collection of sub-surfaces. This
Mapping is not a normal Mapping since it does not represent a transformation from the unit square.

As an example, a CompositeSurface is used to represent the collection of NURBS and trimmed-NURBS surfaces that can
be created by CAD packages. A single CompositeSurface can hold any number of these surfaces. Each sub-surface in a
CompositeSurface is just any Mapping. Usually every sub-surface will actually be a surface in 3D but this is not necessary.

The most common use for a CompositeSurface is in combination with the Hyperbolic surface grid generator. This surface
grid generator can grow a grid over a portion of a CompositeSurface, starting from some intial curve on the surface.

9.1 Projection onto the composite surface

The CompositeSurface has a function pr oj ect that can be used to take one or more points in space, x;, and project these
points onto the CompositeSurface, giving new points x.

The hyperbolic surface grid generator, for example, will march a line of points over the CompositeSurface. At each step in
it’s marching algorithm, new positions will be predicted for the next position for the line of points. These predicted values are
then projected exactly onto the CompositeSurface.

The projection algorithm make use of the following variables:

X : point near the surface that needs to be projected.
so : initial guess for the sub-surface patch on which to look (may be omitted).

X . a previous point on the CompositeSurface that is near to x. This may be the previous location of x from a surface grid
generator (may be omitted).

ny : normal to the CompositeSurface at the point xo (may be omitted).
X, . projected point on the surface.

sp - subsurface index where the point was projected.

n, : normal to the CompositeSurface at the point x,,.

Here is the basic projection algorithm

1. Project x on the sub-surface patch s, giving the pointy = Ps,(x). If y is in the interior of the sub-surface then we are
done.

2. If y is on the boundary of the sub-surface sy then compute the distance dg = ||x — y||. We will try to find a sub-surface
that is closer than this distance.

3. Choose a new sub-surface to check, s1, and project x onto this surface, y; = Ps, (x).

9.1.1 Moving around sharp corners

If the point x to be projected is near a sharp corner in the surface then there is some ambiguity as to the desired projection point
Xp.

If we are marching over the surface then we usually want the projected point x,, to be some specified distance from the old
point xq. In this case we may have to adjust the projected point and move it away from the corner.

9 COMPOSITESURFACE: DEFINE A SURFACE FORMED FROM MANY SUB-SURFACES

x_old X

X_p

9.2 Constructor

CompositeSurface()

Purpose: Default Constructor

9.3 operator =

CompositeSurface &
operator =(const CompositeSurface & X0)

Purpose: operator equal is a deep copy

94 add
int
add(Mapping & surface,
const int & surfacelD =-1)

Purpose: Add a surface to the composite surface
surface (input): add this mapping to the composite surface.

surfacelD (input): optional surface identification number. This could identify the surface in a CAD file, for example.

9.5 isVisible
int
isVisible(const int & surfaceNumber) const

Description: Query whether a sub-surface is visible.

surfaceNumber : sub-surface index from 0 to numberOfSubSurfaces()-1

59

9 COMPOSITESURFACE: DEFINE A SURFACE FORMED FROM MANY SUB-SURFACES 60

9.6 setlsVisible
int
setlsVisible(const int & surfaceNumber,
const bool & trueOrFalse =TRUE)
Description: Set the visibity of a sub-surface. Invisible sub-surfaces are NOT considered by the project function.
surfaceNumber : sub-surface index from 0 to numberOfSubSurfaces()-1

trueOrFalse (input) : true if visible, else invisible.

9.7 findOutwardTangent

int

findOutwardTangent(Mapping & map, const realArray & r, const realArray & x, realArray & outwardTangent)
Access: This is a protected routine.

Purpose: Determine the outward tangent at point r on the edge of a (trimmed) sub-surface. If r is on the boundary of the unit
square then it is easy to get the outward tangent. If r is near the the boundary of a trimmed surface then we find which
trimming curve we on on and use the normal to the trimming curve (which is in r space) to get the outward tangent.

map (input): find the outward tangent of this Mapping.

r(0,0: 1) (input) : unit square coordinates on the surface.

x(0,0: 2) (input) : surface coordinates x=map(r)
outwardTangent(0,0: 2) : outward tangent (if return value==0)

Return values: 0 on success, 1 for failure.

9.8 findNearbySurfaces

void

findNearbySurfaces(const int & s,
realArray &,
const bool & doubleCheck,
IntegerArray & consistent,
IntegerArray & inconsistent)

visibility: This is a private routine.

Description: Given a point r on the boundary of a surface, find any nearby surfaces to this point and set the signForNormal
array

9.9 determineTopology

void
determineTopology()

Purpose: This is a private function. Determine some topology info about the composite surface: Determine the sign for each
normal so that the normals of all surfaces are consistent.

Algorithm: We want to assign a value of +1 or -1 to each surface (signForNormal(s)) to indicate if we need to reverse the
normal of the surface or not.

e surface zero is arbitrarily given a sign of +1. All other surfaces are given a unique positive number to identity the
surface

e We now try to link surfaces together. If two surfaces are connected at a boundary then we assign the same number
to them (actually plus or minus the same number depending on whether the normals need to be reversed). If the
two surfaces are already connected to other surfaces then all connected surfaces get (+/-) the same value.

9 COMPOSITESURFACE: DEFINE A SURFACE FORMED FROM MANY SUB-SURFACES 61

o If one of the surfaces is numbered +/- 1 (then it must be connected to surface zero) then all connected surfaces will
get a value of +/- 1

e stop checking when all surfaces have a value of +/- 1

9.10 numberOfSubSurfaces
int
numberOfSubSurfaces() const

Purpose: return the total number of sub-surfaces that make up this composite surface

9.11 []

Mapping &
operator [](const int & subSurfacelndex)

Purpose: return the Mapping that represents a subSurface

9.12 printStatistics
int
printStatistics(FILE *file =stdout)

Purpose: Print some statistics about the CompositeSurface. Currently only some timing statistics for the project function are
presented.

9.13 remove

int

remove(const int & surfaceNumber)

Purpose: Remove a sub-surface from the composite surface

surfaceNumber (input): remove this surface.

9.14 recomputeBoundingBox

void
recomputeBoundingBox()

Purpose: Recompute the bounding box of the CompositeSUrface by querying all subsurfaces (visible and invisible) of their
bounding boxes. Use this routine sparingly, since changing the bounding box will make the plot translate on the screen.

Author: AP

9.15 getColour

astring
getColour(const int & surfaceNumber) const

Purpose: Get the colour of a sub-surface.
surfaceNumber (input): sub-surface to set.

Return value : the name of the colour.

9 COMPOSITESURFACE: DEFINE A SURFACE FORMED FROM MANY SUB-SURFACES 62

9.16 setColour
int
setColour(const int & surfaceNumber, const aString & colour)

Purpose: Set the colour for a sub-surface.

surfaceNumber (input): sub-surface to set.

colour (input) : the name of the colour such as "red”, “green”,...

9.17 project

int

project(realArray & X,
MappingProjectionParameters & mpParams)

Purpose: Project the points x(i,0:2) onto the surface. Also return the sub-surface index

subSurfacelndex (input/output) : The index of the sub-surface that the point is closest to. On input this is the index of the
previous point (if ;= 0)

elementlindex (input/output) : if the CompositeSurface has an associated triangulation then this will be the closest element
on the triangulation. On input this is a guess to the closest triangulation (if ¢(=0).

x (input) : project these points onto the surface.

rProject (input/output) : sub-surface coordinates. On input these are an initial guess. On output they are the actual unit
square coordinates.

XProject (input/output) : on input these are the projected points from the previous step (if subSurfacelndex;=0 on input). On
output these are the projected points.

XrProject (output) : the derivative of the mapping at xProject

normal (input/output) : on input this is the normal to the surface at the old point. On output this array then it will hold the
normal to the surface, normal(i,0:2). The normal vector will be chosen so that it is consistent across all sub-surfaces

ignoreThisSubSurface(i) (input) : Optional. Do not consider this sub-surface when projecting point x(i,0:2).

9.18 project

void
project(intArray & subSurfacelndex,
realArray & X,
realArray & rProject,
realArray & xProject,
realArray & xrProject,
realArray & normal = Overture::nullRealDistributedArray(),
const intArray & ignoreThisSubSurface = Overture::nullintArray(),
bool invertUntrimmedSurface = false)

Purpose: Project the points x(i,0:2) onto the surface. Also return the sub-surface index NOTE: invisible surfaces are ignored
when projecting.

subSurfacelndex (input/output) : The index of the sub-surface that the point is closest to. On input this is the index of the
previous point (if ;= 0)

x (input) : project these points onto the surface.

rProject (input/output) : sub-surface coordinates. On input these are an initial guess. On output they are the actual unit
square coordinates.

9 COMPOSITESURFACE: DEFINE A SURFACE FORMED FROM MANY SUB-SURFACES 63

XProject (input/output) : on input these are the projected points from the previous step (if subSurfacelndex;=0 on input).
On output these are the projected points. These should always have some valid values on input to prevent purify UMR
problems.

xrProject (output) : the derivative of the mapping at xProject

normal (input/output) : on input this is the normal to the surface at the old point. On output this array then it will hold the
normal to the surface, normal(i,0:2). The normal vector will be chosen so that it is consistent across all sub-surfaces

ignoreThisSubSurface(i) (input) : Optional. Do not consider this sub-surface when projecting point x(i,0:2).

invertUntrimmedSurface: if tru only invert the untrimmed surface of a trimmed mapping. Use this option if the triangulation
has already been used to find the closest sub-surface.

9.19 map

void
map(const realArray & r, realArray & X, realArray & xr, MappingParameters & params)

Purpose: This routine should not normally be called

9.20 getSignForNormal
int
getSignForNormal(int s) const

Description: Return the sign of the normal for sub-surface s, either +1 or -1; In order to orient the normals to the sub-surfaces
in the same direction it may be necessary to reverse the normals of some sub-surfaces.

9.21 setTolerance
int
setTolerance(real tol)

Description: Set the tolerance for how well the surfaces match (may come from the CAD file)

9.22 getTolerance

real
getTolerance() const

Description: Get the tolerance for how well the surfaces match (may come from the CAD file)

9.23 eraseCompositeSurface

void
eraseCompositeSurface(GenericGraphicsinterface &gi, int surface = -1)

Description: purge all display lists if surface = -1, otherwise, just purge one list

surface (input): purge the display lists for this surface. By default purge all lists.

9.24 findBoundaryCurves
int
findBoundaryCurves(int & numberOfBoundaryCurves, Mapping **& boundaryCurves)

Description: Locate boundary curves on a CompositeSurface. Merge boundary edge curves that form a smooth portion of the
boundary.

numberOfBoundaryCurves (output) : number of boundary curves found.

boundaryCurves (output) : Boundary curves.

9 COMPOSITESURFACE: DEFINE A SURFACE FORMED FROM MANY SUB-SURFACES

9.25 Examples

ik
trimmed surfacl

§' Lo

A CompositeSurface for a cylindrical surface read from an IGES file created by pro/ENGINEER

64

10 CROSSSECTIONMAPPING: DEFINE VARIOUS SURFACES BY CROSS-SECTIONS 65

10 CrossSectionMapping: define various surfaces by cross-sections

10.1 Description

The CrossSectionMapping can be used to define a Mapping from a collection of cross-sectional curves or surfaces. The
available options for the cross-section type are

general: Build a mapping from a sequence of cross sections. The cross sections may be curves (such as circles or splines etc.)
or they may be surfaces such as an Annulus or SmoothPolygonMapping.

ellipse: Define an ellipsoid, either a surface or a shell.
joukowsky: Define a “wing” surface with cross sections defined as Joukowsky airfoils.

Thanks go to Thomas Rutaganira for help with this Mapping.

pipe

Nl

A volume grid created from the six AnnulusMapping’s (cubic
interpolation).

Six AnnulusMapping’s to be used as cross-sections.

10.2 General cross-section type

When the cross-section type is gener al the user specifies a sequence of curves (or surfaces) that will be used as the cross-

sections.
Given a sequence of n cross-sectional curves

ci(rp), 1=0,1,....n—1 (cross-section curves)
the Cr ossSect i onMappi ng defines a surface by blending the curves in the regions between them.
x(t,rq) = C(c;(t),7q) -

The parameter direction(s) t will be called the tangential direction(s). If the cross-sections are curves then t = r; if they are
surfaces t = (rg, r1). The direction r, will be called the axial direction. As r, varies for fixed t we trace a curve that follows
the axis of the surface.
With linear interpolation (default) the curve is a linearly interpolated between succussive cross-sections:
i i+1
<S <
n—17" (ra) < n—1

x(t,7rq) = (1 — 8q)c;(t) + saxi41(t) for
sa = S5(ra)(n —1) = [S(ra)(n = 1))

10 CROSSSECTIONMAPPING: DEFINE VARIOUS SURFACES BY CROSS-SECTIONS 66

where the axial parameterization function S(r,) is defined below. The variable s, varies between 0 and 1 as we move from
cross-section ¢ to cross-section ¢ + 1. Here |z is the biggest integer less or equal to x.

With i ndex parameterization S(r,) = r, in which case the cross-sections are parameterized as if they were equally
spaced. Thus there will be approximately an equal number of axial grid lines between any two cross-sections. Normally this is
not a good parameterization unless the cross-sections are nearly equally spaced.

With ar cLengt h parameterization (the default) the axial direction is parameterized using the average distance between
the cross-sectional curves. The average distance between the curves is computed by evaluating each curve at m equally spaced
points {c; (tj)};.’;‘ol, t; = j/(m — 1), and then taking the average of the distances between these points.

Sit1 = S; + ||Ci+1 — CZH/L so=0, L chosen so Spn_1 = 1.

1 m—1
41 =il = — D i (t) = city)]
=0

The inverse of the function S(r,) is defined by fitting a spline to the data points {s; ;‘;01. That is a spline fitted to the
points {s; ?:‘01 will define the function S—!. The exact properties of the spline can be adjusted by choosing the “change
arcl ength spline paraneters” option. For example, one may want to use a spline with tension or a spline that is
shape preserving. See the SplineMapping documentation, section (33), for further details.

With a user Def i ned parameterization the user defines the parameter values s; for each of the cross-sections. The values
s; should satisfy so = 0, s; < s;41 and s,—1 = 1. Normally the value of s; — s;_; would be based on the distance between
the cross-section curves i — 1 and i. The inverse of the function S(r,) is defined by fitting a spline to the data points {s;}7—.

With piecewise cubic interpolation the mapping is defined as a cubic polynomial on each interval (except the first and last
where quadratic polynomials are used)

x(t,74) = qo3(sa)ci—1(t) + q13(5a)%; (t) + g23(5a)Xi41(t) + g33(54)Xi=2(t) for
sa =S(ra)(n—1) = [S(ra)(n —1)]

where ¢;3 are cubic Lagrange polynomials. On the left edge a quadratic polynomial is used which passes through the cross
sections 0, 1, 2. Similarly for the right edge.

7 1+ 1
< S(r,) <
n—17" (T)*n—l

10.2.1 Notes for generating general cross section mappings
1. For best results the cross sections should be nearly equally spaced.

2. With the cubic interpolation option: quadratic polynomials are used on the first and last segments. If you wish an end
segment to be “straight” then you should place three cross sections in a straight line at the end.

3. Itis up to you to make sure that the cross sections are all parameterized in a compatible fashion; if they are not then the
axial grid lines may twist and the grid may not be invertible.

4. With the cubic interpolation option: if the cross sections vary rapidly from one to the next or the cross sections are
very unevenly spaced then the cubic interpolant (or quadratic interpolants on the ends) may wiggle a lot. Adding more
cross-sections should fix this problem.

10.3 Ellipse cross-section type

When the cross-section type is el | i pse the Mapping defines an ellipsoid in cylindrical coordinates with semi-axes a, b, c:
¢ = (endS — startS)rg — (1. — 2. * startS)
p=V1-¢
R = innerRadius + r2(outerRadius — innerRadius)
xo = aRpcos(2mry) + x0
x1 = bRpsin(27ry) + y0
T9 = cR(+ 20
The default values for the parameters are startS=0, endS=1, innerRadius=1, outerRadius=1.5, x0=0, y0=0, z0=0.

After building an ellipsoid one would normally remove the singularities at the poles by building patches to cover the ends
using the r epar anet er i ze option. See the example in the overlapping grid documentation.

10 CROSSSECTIONMAPPING: DEFINE VARIOUS SURFACES BY CROSS-SECTIONS 67

10.4 Joukowsky cross-section type

This section needs to be written.

10.5 Cross section Mappings with polar singularities

It is often the case that one desires the cross-sections to converge to a point at one or both ends. In this case one should
indicate that the Mapping has a polar singularity at one or both ends. One should also choose the last cross section to be a
small ellipse. The CrossSectionMapping will then slightly deform the Mapping to cause the last cross-section to converge
to a point. The resulting deformed Mapping can then have an orthographic patch built to cover the singularity using the
Repar anet eri zati onTransform

In order for the Or t hogr aphi ¢ Tr ansf or mto nicely remove a polar singularity, the Mapping with the singularity must
locally near the pole be parameterized like

x ~ Ap(r1)(acos(f(rz),bsin(f(r2)))

p=+1-¢

C = 27’1 -1
Thus locally the surface must look like an ellipsoid (it can be oriented in any direction, the above equation assumes a particular
orientation). The “radius” of the cross section, defined, say, by the average distance of the cross-section from its centroid, should

be decaying like p ~ /r1 asr; — 0. If the radius decays at a different rate then the coordinates lines on the orthographic patch
will not be rectangular near the pole.

10.6 Constructor

CrossSectionMapping(

const real startS_,

const real endS_,

const real startAngle_,

const real endAngle_,

const real innerRadius._,

const real outerRadius._,

const real x0_,

const real yO_,

const real zO_,

const real length_,

const int domainDimension_)
Description: Default Constructor, define a mapping from cross-sections.

Build a mapping defined by cross sections. In the gener al case the cross-sections are defined by other Mapping’s. One
can also build an ellipsoid when the cross-section type is el | i pse or a Joukowsky wing. enum CrossSectionType:

e general
e ellipse
e joukowsky

enum Parameterization:

arcLength : parameterize by the arc length distance between the centroids of the cross sectional curves.
index : parameterize by the index of the cross section.
userDefined : supply a parameterization.

10.7 setCrossSectionType

int

setCrossSectionType(CrossSectionTypes type)

Description: Define the cross-section type. *this is not finished yet*

type (input):

10 CROSSSECTIONMAPPING: DEFINE VARIOUS SURFACES BY CROSS-SECTIONS

10.8 Constructor
int
initialize()

Description: private routine. Initialize the parameterization for the cross sections.

10.9 Examples

Joukowsky wing

00 ~1.50 ~1.00 =0.50 0.00 u\-(»

X
\\, “

I

A Joukoswky airfoil created with the j oukowsky

An ellipsoid created with the el | i pse cross-section type. Cross-section type,

Cross section from SmoothedPolygons

A volume grid created from 4 smoothed polygon cross-section
surfaces (linear interpolation).

68

©Co~NoUOR~wWNE

*

* Define a cross section napping

*

Circle or ellipse (3D
specify radius of the
1.
specify centre
0. 0. O.
I'i nes
21 25
mappi ngNane
circle0
exit
Circle or ellipse (3D
speci fy radius of the
1.
specify centre
0. 0. .4
l'i nes
21 31
mappi ngNane
circlel
exit
Circle or ellipse (3D
speci fy radius of the
.8
specify centre
0. 0. .6
mappi ngNane
circle2
exit
Circle or ellipse (3D
speci fy radius of the
.8
specify centre
0. 0. 1.
mappi ngNane
circle3
exit
*

circle

circle

circle

circle

* make a cross section mappi ng

CrossSection
gener al
4
circle0
circlel
circle2
circle3
x+r 30
y+r

10 CROSSSECTIONMAPPING: DEFINE VARIOUS SURFACES BY CROSS-SECTIONS 69

CrossSection

A surface grid created from 4 circular cross-sections (linear interpolation).
The cross-sections are shown in green.

CrossSection

AL
.

As above with cubic interpolation.

11 CYLINDERMAPPING

11 CylinderMapping

This mapping defines a cylindrical volume or surface in three-dimensions.

outerRadius

startAxis + z0

Figure 4: The CylinderMapping defines a cylinder in three-dimensions.

11.1 Constructor

CylinderMapping(
const real & startAngle_=0.,
const real & endAngle_=1.,
const real & startAxis_ = -1.,
const real & endAxis_=+1.,
const real & innerRadius_=1,,
const real & outerRadius_= 1.5,
const real & x0_=0.,
const real & y0_=0.,
const real & z0_=0,,
const int & domainDimension_= 3,
const int & cylAxisl_ = axisl,
const int & cylAxis2_ = axis2,
const int & cylAxis3_ = axis3

)
Purpose: Create a 3D cylindrical volume or surface.

Notes: This mapping defines a cylinder in three-dimensions:

0 = 2m(6p + ro(61 — 6o))

11 CYLINDERMAPPING 71

R(r1) = (Ro + r1(R1 — Ro))
x(ro,r1,72) = (Rcos(0) + o, Rsin(0) + yo, so + r2(s1 — o) + 20)

The above cylinder has the z-axis as the axial direction. It is also possible to to have the axial direction to point in any of
the coordinate direction using the (cyl Axi s1, cyl Axi s2, cyl Axi s3) variables (which should be a permutation of
(0,1,2)):

X(Teyl Aziss TeylAzis2, TeylAzis3) = (Rcos(0) + o, Rsin(6) + yo, so + r2(s1 — s0) + 20)

startAngle (input) : starting angle (/) NOTE: angles are 1-periodic!

endAngle (input) : ending angle (#1) NOTE: angles are 1-periodic!.

startAxis (input) : axial coordinate of the start of the cylinder (sy).

endAxis (input) : axial coordinate of the end of the cylinder (s1).

innerRadius (input) : inner radius (Rg).

outerRadius (input) : outer radius (Ry).

x0,y0,z0 (input) : center of the cylinder (z¢,y0,20)-

domainDimension (input) : 3 means the cylinder is a volume, 2 means the cylinder is a surface.

cylAxisl,cylAxis2,cylAxis3 (input) : change these to be a permutation of (axisl,axis2,axis3) to change the orientation of the

cylinder. NOTE: axis1==0, axis2==1, axis3==2.

11.2 setAngle

int

setAngle(const real & startAngle_=0.,
const real & endAngle_=1.)

Description: Set the initial and final angles.
startAngle (input) :
endAngle (input) :

11.3 setAxis

int

setAxis(const real & startAxis_=-1.,
const real & endAxis_=+1.)

Description: Set the starting and ending axial positions.
startAxis (input) : axial coordinate of the start of the cylinder (so).

endAxis (input) : axial coordinate of the end of the cylinder (s;).

11.4 setOrientation
int
setOrientation(const int & cylAxis1_ =0,

const int & cylAxis2_=1,
const int & cylAxis3_ =2)

Description: Set the orientation of the cylinder.

cylAxisl,cylAxis2,cylAxis3 (input) : change these to be a permutation of (axisl,axis2,axis3) to change the orientation of the
cylinder. NOTE: axis1==0, axis2==1, axis3==2.

11 CYLINDERMAPPING

115 setOrigin
int
setOrigin(const real & x0_=0.,

const real & y0_=0.,
const real & z0_=0.)

Description: Set the centre of the cylinder.

x0,y0,z0 (input) : center of the cylinder (x¢,y0,20)-

11.6 setRadius

int

setRadius(const real & innerRadius_=1.,
const real & outerRadius_=1.5)

Description: Set the inner and outer radii.
innerRadius (input) : inner radius (Ryp).

outerRadius (input) : outer radius (Ry).

Figure 5: CylinderMapping. This is the volume representation. The cylinder may also represent a surface.

Cylinder

72

12 DATAPOINTMAPPING: CREATE A MAPPING FROM AN ARRAY OF GRID POINTS 73

12 DataPointMapping: create a mapping from an array of grid points

12.1 Description

The Dat aPoi nt Mappi ng can be used to create a mapping from a set of grid points. The grid points may be in a file (such as
Plot3D format) or can be in an A++ array.
The Dat aPoi nt Mappi ng defines a Mapping transformation by interpolating the grid points.
For or der O | nt er pol at i on=2 the transformation is defined as a linear interpolation (i.e. 2 points in each direction).
In 2D this would be
X(I‘) = (1 — 'f’g)[(l — 721)X0() + 7A’1X10] + ’IA’Q[(]. — ’121)X01 + 7A’1X11]

where x,,,,, are the grid points that define the cell and #,,, are the relative distances of the point r from the r-coordinates of the
corner point xgq
(r1 —700) o (r2 — 700)

2
A’I‘l ’ AT’Q

The derivatives returned by the Mapping are just the derivatives of the above expression.
For or der O | nt er pol at i on=4 the transformation is defined as a cubic interpolation (i.e. 4 points in each direction).
In 2D this would be defined as

1 =

3 3
X(I‘) = Z Q’m(fQ) Z Qn(’f'l)xnm (1)
m=0 n=0
Gm(s) = H (s—=mn)/(m —n) Lagrange polynomials, ¢,,(n) = dnn)
n#m

The derivatives returned by the Mapping are just the derivatives of the above expression.
Figure 12.1 shows a grid for part of the coast of the USA, created by Lotta Olsson. The grid was created with the help of
the HYPGEN hyperbolic grid generator and saved in Plot3D format.

12.2 Fast Approximate Inverse

Since the DataPointMapping is extensively used, a specialized fast approximate inverse has been defined (not yet!) for linear
interpolation.
The inverse consists of the steps:

1. Find the closest vertex on the grid to the point, x, to be inverted.
2. Find the hexahedral that x is in.
3. Invert the bilinear (tri-linear) mapping (approximately).
The linear interpolant within a given cell is
x(r) = (1 — 79)[(1 — 7#1)x00 + T1X01] + 7o[(1 — 71)X10 + T1X11]
in 2D or
x(r) = (1 — 79)[(1 — 71)((1 — P2)x000 + T2Xo01) + 71((1 — F2)X010 + F2X011)]
+7o[(1 — 71)((1 — 72)X100 + 7oX101) + 71 ((1 — 72)X110 + T2X111)]

in 3D where x;.,,,, are the grid points that define the cell and #,, are the scaled unit square coordinates, #,, € [0, 1] for points
within the cell.
A Newton iteration to invert the mapping would look like

0
x(rog + or) = x(ro) + a—):(ro)ér.

where
ox []
_8r =layg a; as

12 DATAPOINTMAPPING: CREATE A MAPPING FROM AN ARRAY OF GRID POINTS 74

where

In the special case when the cell is a regular *"diamond’ shape the linear interpolant simplifies to

x(r) — X000 = 70 (X100 — X000) + 71 (X010 — X000) + 72(X001 — X000)

or
x(r) = 7oX100 + 71 X010 + T2X001

where the inverse’ is computed by solving a d x d matrix

[Xloo X010 X001] 1 :[X]

** The newton step will do this case exactly**
If the cell is not regular we can compute an approximate inverse by first computing coordinates #/" for each vertex,
assuming a regular diamond shape at the vertex x;.,,,,, formed from the points that connect to the vertex.

12.3 Constructor
DataPointMapping()

Purpose: Default Constructor.

12.4 getDataPoints
getDataPoints()

Description: Return the array of data points. It will not be the same array as was given to setDataPoints since ghostlines will
have been added. Use getGridindexRange to determine the index positions for the grid boundaries.

Return value: array of data points, xy(11,12,13,0:r-1), r=rangeDimension

12.5 getGridlndexRange

const IntegerArray &
getGridlndexRange()

Description: Return the gridindexRange array for the data points. These values indicate the index positions for the grid
boundaries.

Return value: The gridindexRange(0:1,0:2).

12.6 getDimension

const IntegerArray &
getDimension()

Description: Return the dimension array for the data points. These values indicate the index positions for the array dimensions.

Return value: The dimension(0:1,0:2).

12 DATAPOINTMAPPING: CREATE A MAPPING FROM AN ARRAY OF GRID POINTS 75

12.7 setDataPoints
int
setDataPoints(const realArray & xd,
const int positionOfCoordinates =3,
const int domainDimension_ =-1,
const int numberOfGhostLinesInData = 0,
const IntegerArray & xGridlndexRange = Overture::nullintArray())

Purpose: Supply data points as

1. xd(0:r-1,1,J,K) if positionOfCoordinates==0 — domainDimension=domainDimension_
2. xd(l,0:r-1) if positionOfCoordinates==1 — domainDimension=1

3. xd(l,J,0:r-1) if positionOfCoordinates==2 — domainDimension=2

4. xd(1,J,K,0:r-1) if positionOfCoordinates==3 — domainDimension=domainDimension_

where r=number of dimensions (range dimension)
xd (input): An array of values defining the coordinates of a grid of points. This routine make a COPY of this array.
positionOfCoordinates (input): indicates the "shape” of the input array xd.

domainDimension_ (input): As indicated above this parameter defines the domainDimension when positionOfCoordinates is
0or 3.

numberOfGhostLinesIinData (input) : The data includes the coordinates of this many ghost lines (for all sides). These values
are over-ridden by the index array argument.

xGridlndexRange (input): If this array is not null and size (2,0:r-1) then these values indicate the points in the array xd that
represent the boundary points on the grid. Use this option to specify arbitrary number of ghost points on any side.

Remarks: Note that by default the DataPointMapping will have the properties

e domainSpace = parameterSpace
e rangeSpace = cartesianSpace

e not periodic

e boundary conditions all 1

You will have to change the above properties as appropriate. NOTE: you should set the periodicity of this mapping before
supplying data points.

12.8 setDataPoints
int
setDataPoints(const realArray & xd,
const int positionOfCoordinates,
const int domainDimension_,
const int numberOfGhostLinesInData[2][3],
const IntegerArray & xGridlndexRange = Overture::nullintArray())

Description: Supply data points: Same as above routine except that the numberOfGhostLinesInData can be defined as separate
values for each face.

numberOfGhostLinesInData[side][axis] : specify the number of ghostlines in the input data for each face.

12 DATAPOINTMAPPING: CREATE A MAPPING FROM AN ARRAY OF GRID POINTS 76

12.9 computeGhostPoints

int

computeGhostPoints(int numberOfGhostLinesOIld[2][3],
int numberOfGhostLinesNew[2][3])

Access Level: protected

Description: Determine values at ghost points that have not been user set: extrapolate or use periodicity Ghost lines on sides
with boundaryCondition¢0 are extrapolated with a stretchingFactor (see below) so that the grid lines get further apart.
This is useful for highly stretched grids so that the ghost points move away from the boundary.

12.10 setNumberOfGhostLines
int
setNumberOfGhostLines(int numberOfGhostLinesNew([2][3])

Description: Specify the number of ghost lines.

numberOfGhostLinesNew[side][axis] : specify the number of ghostlines.

12.11 projectGhostPoints
int
projectGhostPoints(MappingInformation & mapinfo)

Description: Project the ghost points on physical boundaries onto the closest mapping found in a list of Mapping’s

maplnfo (input): Project onto the closest mapping found in mapinfo.mappingL.ist.

12.12 setDataPoints(fileName)
int
setDataPoints(const aString & fileName)

Description: Assign the data points from a file of data. By default this routine will attempt to automaticall determine the
format of the file.

fileName (input) : name of an existing file of data (such as a plot3d file)

12.13 setMapping

int

setMapping(Mapping & map)

Description: Build a data point mapping from grids points obtained by evaluating a mapping.

map (input) : Mapping to get data points from.

12.14 setOrderOfinterpolation

void
setOrderOfiInterpolation(const int order)

Purpose: Set the order of interpolation, 2 or 4.

order (input) : A value of 2 or 4.

12 DATAPOINTMAPPING: CREATE A MAPPING FROM AN ARRAY OF GRID POINTS 77

12.15 setOrderOfiInterpolation
int
getOrderOfinterpolation()

Purpose: Get the order of interpolation.

Return value: The order of interpolation.

12.16 useScalarArraylndexing

void
useScalarArraylndexing(const bool & trueOrFalse =FALSE)

Purpose: Turn on or off the use of scalar indexing. Scalar indexing for array operations can be faster when the length of arrays
are smaller.

trueOrFalse (input) : TRUE means turn on scalra indexing.

12.16.1 sizeOf

real
sizeOf(FILE *file = NULL) const

Description: Return size of this object

12.17 update
int
update(Mappinglnformation & maplnfo)

Purpose: Interactively change parameters describing the Mapping. The user may choose to read in data points from a file. The
current supported file formats are

e plot3d

12 DATAPOINTMAPPING: CREATE A MAPPING FROM AN ARRAY OF GRID POINTS

Y —duis

0.750
|

'y, Q‘:‘"&":E:.‘
oy i
R i e
St
R

&

0500

Q00 0,750

r—huds

Figure 6: A DataPointMapping created from a Plot3D file.

78

13 DEPTHMAPPING: ADD A DEPTH TO A 2D MAPPING 79

13 DepthMapping: Add a depth to a 2D Mapping

13.1 Description

Define a 3D Mapping from 2D Mapping by extending in the z-direction by a variable amount
The depth mapping starts with some region defined in the (z,y) = (zo, z1) plane, (zg, 1) = x5(rg, 1), Such as an annulus
or square etc. It then defines a 3D volume (or 3D surface) of the form

X(’I"[), 7‘1,7“2) = (.’Eo(?"o,’lj), 1‘1(7”077“1)7232(7“0,7“177“2))

As the variable r, varies, the initial 2D surface is deformed to define a generalized cylinder.
The depth coordinate, x5 is defined in a number of ways:
Representation I: In this case the depth is a function of (x(, ;) and uses some predefined functions available in the
Dept hivappi ng,
x(r) = (x5(ro,71), 20 + 122(X5(10,71)))

Representation I1: depthFunction
One would like to be able to provide a depth function z = d(z, y) which gives a depth as a function of (z,y). This is not
easily done with the existing Mapping’s in Overture, since most Mapping’s are parameterized as transformations from the unit
square, x = x(r). Thus instead of a function z = d(z, y), we use a parameterized representation,
d(ro,71,72) = (do(ro,71),d1(r0,71), da2(r0,71,72)).

where only ds(rg,71,72) is of interest. Now given a point (z,y) on the original 2D Mapping we want to determine the
corresponding value for d,. To do this we need a transformation from (z, y) to the arguments (o, r1) of g2, which we take to
be the simple linear transformation (z, y) = g(z,y) = (ag + boro, a1 + b171).

The volume depth mapping is then defined as

X(TO,T177”2) = (wo(roa7"1),551(7“0,7“1),dz((xo(roa7"1) - ao)/bo, (551(7‘0,7“1) - a1)/b177“2))

A surface depth Mapping would simply omit the argument r. The scale parameters (ao, by, a1, b1) must be supplied by the
user to ensure that the scaled coordinates

satisfy 0 < 7; < 1 for all points x4(rg,71).
Normally the scale parameters just indicate how to scale fron the unit square into (x, y) corrdinates,

T; = a; + b;r;

So that if the physical domain covers the rectangle [—1, 1] x [—2, 2] one should take ag = —1,by = 2,a; = —2,b; = 4 since
r=—142xrg,y=—-2+4x%r.

13.1.1 Quadratic depth profile

The quadratic depth function is defined by a quadratic polynomial:

2 2
2(x0,21) = aoo + a10To + @011 + A20xF + a1120T1 + ag2xT

OO WNE

13 DEPTHMAPPING: ADD A DEPTH TO A 2D MAPPING

13.2 Examples

Annul us
exit
dept h mappi ng
quadratic depth
-.7500 .50. .5
exit

=
=
==

A DepthMapping starting from an Annulus. The depth is defined by a

parabola.

13.3 Constructor
DepthMapping()

Description: Define a 3D Mapping from 2D Mapping by extending in the z-direction by a variable amount

13.4 setDepthFunction

int

setDepthFunction(Mapping & depth_)

Description: Supply a mapping that will define the depth.

depth_ (input) : Use this mapping for the depth, z = depth(zq, z1).

13.5 setDepthFunction

int

setDepthFunctionParameters(real a0, real b0, real al, real bl)
Description: Define the scaling parameters for the depth function.

a0,b0,al,b1_(input) :

13.6 setSurface

int

setSurface(Mapping & surface_)

Description: Supply a 2D mapping that will define the surface of the 3D domain.

surface_ (input) : 2D Mapping.

80

13 DEPTHMAPPING: ADD A DEPTH TO A 2D MAPPING 81

13.7 setQuadraticParameters

int

setQuadraticParameters(const real & a00_,
const real & a10._,
const real & a01._,
const real & a20._,

const real & all_,
const real & a02.)

Description: Specify the parameters for a quadratic depth function:
2(20, 1) = aoo + a10Z0 + A01T1 + a2z + a11ToT1 + a2}

a00_, a10.,... (input): parameters in above formula.

13 DEPTHMAPPING: ADD A DEPTH TO A 2D MAPPING 82

%2

0.50 —

0.25

0.00

-0.25

-0.50

-0.75

1 1 1 1
-0.75 -0.50 -0.25 0.00 0.25 0.50 Q.75

Figure 7: The DepthMapping (see bottom figure) is used to give a vertical dimension to mappings defined in the plane,
dept h. cnd. In this case a separate TFI mapping, top left, defines the vertical height function Both an annulus and a square
(top right) are given a depth.

14 ELLIPTICTRANSFORM 83

14 EllipticTransform

This Mapping was originally created by Eugene Sy. Changes made by Bill Henshaw.
**** This documentation is out of date as | have made lots of changes ****

14.1 Introduction

The program EllipticTransform.C performs smoothing on a desired mapping by solving a Poisson equation on the domain. A
new elliptic mapping is created from the original mapping which is supplied as an initial condition.

The original mapping M maps the unit square U into physical space €2,,. With the elliptic transform, a one to one function
E' taking U into €, is first created. Then, M~ is applied to the solution in £2,, to map the points back into the unit square. In
this way, a mapping D = M ~!(E’) is obtained, where D : U ~ U, and D is a data point mapping. The elliptic mapping E is
then given by a composition, where

14.2 The Governing Equations

The focus from here on will be on the creation of the mapping E. Assume that U has coordinate directions £ and . The
equations to be solved are:

V¢ =P(&n)
VZn=Q(&n)

These are transformed to computational space and take the form:

9%z 2z 0%z
(8—§2+P 5)‘5‘5(+Q) ’Yagan =0
0%y 82

Ox. 5 0Oy

o = (877) +(67n)2
0 0

B = (a—§>2+<a—§>2

_ Ox0x Oydy

7T BEan T aeay

These equations are solved on the unit square U using finite difference methods.

14.3 Control of the Boundary

The existing code has the ability to evaluate Dirichlet, orthogonal, and periodic boundary conditions for solving the above
equations.

14.3.1 Dirichlet Conditions

If the boundary conditions are Dirichlet the locations of the boundary points must be correctly specified in the initial condition.
These points are considered by the elliptic grid generator to be fixed, and computations are done only on the interior of the grid.

14 ELLIPTICTRANSFORM 84

14.3.2 Orthogonal Boundary Conditions

If the user desires that the gridlines meet the boundary orthogonally, then the points on the boundary are given a degree of
freedom, and are allowed to move along the boundary. For example, consider the boundary £ = 0. Assume that the (n + 1)st
iteration is being computed, and let j represent the n coordinate. The following two equations are solved to give the location of
the boundary points.

Xy, %X = 0 (3)
X"t = X"+ (Ax %)X, 4)
Equation 1 is the orthogonality condition, and equation 2 prevents the boundary points from moving off the boundary. Ax

represents the change in position of the point x dictated from equation 1. In other words, if x™ is the location of the point at the
nth iteration step, equation 1 will steer the point towards a position x* for the (n + 1)st iterate. It follows that

Ax = x*-—x"

* A~ ~

Ax-x%x, = X" -%x,—-x" %X,
To solve the equations, x, in equation 1 is first forward differenced to obtain the following result.

0Ty = YeYy +T1,;8y ®)
y*o,jyn = TeXy+Y1,5Yn (6)

This gives an expression for x* - x,, where x* represents the position the boundary point wants to move to in order to satisfy
the orthogonality condition. x, and all the terms on the right hand side are calculated from the solution at the nth iterate.
Normalizing by ||x,|| yields the following:

0,58y = Yely 1,58y (M
y*O,jgn = méi‘n'i'yl,jyn (8)

This is x* - x,,. Then, since x" - X,, is also readily calculated from the nth iterate, the entire right hand side of equation 2 is
known. This allows calculation of x™**, and the continuation of the iteration.

Orthogonality at the boundary can also be obtained by a different means. As explained in Thompson, et al. [3], the boundary
points can be fixed, and boundary orthogonality enforced by utilization of the proper forcing functions P and Q. In addition,
the thickness of the boundary layer can be specified by the user.

Again, let ¢ = 0, as above, and let j represent the » coordinate. Assume that the boundary layer thickness ||x¢|| is chosen,
and calculate x,, and x,,,, from the fixed locations of the boundary points. All this, together with the orthogonality condition

Xy -Xe =10

allows for the determination of x¢. As shown in Knupp and Steinberg[2]. x, is given by:

el 1+
Xe = X 9)
S gl

Here, x,,* is the vector perpendicular to the vector x,,. In addition to this, the method requires x¢, and this is calculated by
means of the Pade approximation

—7X1,; +8%X1 ; — X3 X
x¢elo = = QAn;j - —3A5—|T;) (10)

Using this information, the proper forcing functions P and @ can be determined.

Xe " Xee Xe Xy
P(ﬁﬂ?) = - -

[xell® llxql?

Xy X X -X&&
Q&n) = S5t —

[l Ix¢ |

Once the appropriate P and @ are determined for the boundary, the values are interpolated onto the interior points using a linear
scaling, and the iteration is continued.

Note that because second order differences are being lagged, heavy underrelaxation is required for this scheme to converge
(Knupp and Steinberg [2]).

14 ELLIPTICTRANSFORM 85

14.3.3 Periodic Boundaries

Two types of periodic boundaries exist. The first is derivative periodic and the second is function periodic. Derivative periodicity
involves identical derivatives on the boundary, but not necessarily identical positions. Function periodicity involves matching
both the derivatives and the positions at the boundary points (as in the case of an annulus).

In either case, the values beyond the boundary are evaluated by means of ghost points. A ghost array allows for calculation
of values on the boundary in much the same way they are found on the interior.

14.4 Sources

Should clustering of points or lines be necessary in the interior, certain points or lines may be designated as being lines of
attraction. This involves manipulation of the source terms P and @ before iteration begins. If a coordinate line is to be made a
line of attraction, the attraction power = must be specified along with the diffusivity . With these two parameters, the following
expressions for P and @ are evaluated at all points in the field.

N
Pline(ga 77) = — Z WzSZgn(f — fi)e_&’lé_&‘
=1
M
Qline (Ea 77) = - Z ﬂ'jSign(n — nj)e*‘sj [n—mn;l
j=1

Here, N and M represent the number of £ and » lines of attraction respectively. Should points of attraction be desired, power
and diffusivity are specified for each point, and two more sums are evaluated.

L
Ppaint (57 77) = - Z WZSZgn(g - Si)e_éilg_&l
i=1
L
onint (57 77) = - Z 773529”(77 - nj)e_éjln_nj‘
j=1

Here, L is the number of point sources. Note that a source can be made into a sink by merely changing the sign in front of the
power .

14.5 Using the Elliptic Grid Generator With Ogen

The user is assumed to be familiar with generation of mappings in Ogen. A mapping must first be made as an initial condition
for the elliptic smoother.

14.5.1 Grid Dimensions

The first thing to specify after choosing a mapping is the amount of grid refinement desired. The number of grid lines in i and
j (or & and n respectively) should be entered before all else, as these parameters are needed for correct implementation of the
boundary conditions.

14.5.2 Boundary Conditions

The appropriate GRID boundary conditions should be entered next. These are not to be confused with the boundary conditions
for the physical problem to be solved later, and the switches are completely independent. The following choices are available:

e -1: Refers to a periodic boundary condition. This is selected by default if a periodic boundary is declared when the
original mapping is made. If a periodic boundary is not specified when the original mapping was created, this boundary
condition should not be used.

e 1. Refers to a Dirichlet boundary condition. The positions of the boundary points in the original mapping are used as
the boundary condition for the elliptic map.

e 2: Refers to a orthogonal boundary condition. This forces the gridlines to meet the boundary in an orthogonal fashion.
The boundary points are free to move, but only along the boundary.

14 ELLIPTICTRANSFORM 86

e 3: Refers to the combined boundary condition. The boundary points are fixed as in the Dirichlet case, but the sources
and sinks are modified so as to guarantee orthogonality at the boundary. This boundary condition requires that the user
specify the thickness of the boundary layer.

The boundary conditions are stored in a 2-dimensional array gridBc(i,j), where i and j range from 0 to 1. On the unit square,
the following are the locations of the boundaries:

e gridBc(0,0): Refers to the boundary conditionon 0 < z <1,y = 0.
e gridBc(0,1): Refers to the boundary conditiononz = 0,0 < y < 1.
e gridBc(1,0): Refers to the boundary conditionon 0 < z <1,y = 1.

e gridBc(1,1): Refers to the boundary conditiononz = 1,0 < y < 1.

14.5.3 Sources and Sinks

If the user decides that lines or points of attraction (repulsion) are desired for the elliptic grid, these can be specified. The
selection Poisson i-line sources creates lines of constant £ into lines of attraction. Similarly, Poisson j-line sources turns lines
of constant » into lines of attraction, and Poisson point sources creates points of attraction in & — 7 space.

The power and diffusivity of each source must be selected carefully. Too much power or too little diffusivity can mar
convergence of the grid.

14.5.4 Other Functions

There are several other switches that can be used. These are:

e change SOR parameter: This changes the value of w used for either overrelaxation or underrelaxation. Setting w =
1 indicates a point Gauss- Seidel method, and is a good conservative first choice. Note that if combined boundary
conditions are used, then w needs to be quite small, usually on the order of 0.05 or 0.1. This is because of the lagged
second order quantities that the scheme requires.

e set maximum number of iterations: This controls the maximum amount of iterations for the grid to converge.

e set epsilon for convergence: This value is the indicator for the convergence of the elliptic grid. If the differences between
successive iterations drops below epsilon, then the grid is said to have converged. This is preset to 10~°.

e set number of periods: If the grid is periodic (either derivative or function), then any sources or sinks in the field need to
be made periodic as well. The number entered here indicates the number of periods desired for these sources and sinks.
1 is the default value. Increasing this number is crucial if strong source terms exist, and 5 or 7 may be needed to properly
resolve the periodicity.

14.6 In Conclusion

The elliptic transform is a fine way to smooth out a grid, and frees the user from the restriction to simple geometries. Unfortu-
nately, convergence of the routine is not guaranteed for all geometries, and for all powers of sources and sinks.

The routine, however, does provide an ability to deal with boundaries well, and can greatly simplify many complex compu-
tations.

14.7 Member functions
14.7.1 Constructor

EllipticTransform()

Purpose: Create a mapping that can be used to generate an elliptic grid from an existing grid. This can be useful to smooth
out an existing Mapping.

14 ELLIPTICTRANSFORM

14.7.2 get

int

get(const GenericDataBase & dir, const aString & name)
Description: Get a mapping from the database.

dir (input): get the Mapping from a sub-directory of this directory.

name (input) : name of the sub-directory to look for the Mapping in.

14.7.3 put

int

put(GenericDataBase & dir, const aString & name) const
Description: Save a mapping into a database.

dir (input): put the Mapping into a sub-directory of this directory.

name (input) : name of the sub-directory to save the Mapping in.

14.7.4 generateGrid

void
generateGrid(GenericGraphicsinterface *gi = NULL,
GraphicsParameters & parameters =Overture::nullMappingParameters())

Description: This function performs the iterations to solve the elliptic grid equations.
gi (input) : supply a graphics interface if you want to see the grid as it is being computed.

parameters (input) : optional parameters used by the graphics interface.

14.8 Examples
14.8.1 Smoothed out diamond airfoil

In the left column is the command file that was used to generate the grid on the bottom right.

©o~NoUR~wWNE

14 ELLIPTICTRANSFORM

*
* Snooth a dianond airfoil with the
* elliptic transform mapping.
*
* first nmake a dianond airfoil
*
Airfoil
airfoil type
di anond
t hi ckness-chord ratio
.2
l'i nes
51 21
exit

*

* now snooth the dianond airfoil
*

elliptic
*

* do not project back onto the original mapping

* since it has a discontinuity
*

x2

project onto original mapping (toggle)
*
* now generate the elliptic transform

*

el l'iptic snoothing
exit

L -

B W W W

1
AY
1
7/

o.00 ELLLITLIRTTTLL 1L L
~1.50 -1.00 -0.50 0.00 0.50 1.00 1.50

v

Diamond airfoil before elliptic transform.
elliptic—airfoil

2.00

175 H 1] [

1.50

.

1.00

0.75H

0.50

0.25H

o8 50 ‘ 150

v

Diamond airfoil after elliptic transform.

88

15 FILLETMAPPING 89

15 FilletMapping

This mapping can be used to create a fillet grid or a collar grid in order to join together two intersecting surfaces. A fillet grid
smooths out the intersection while the collar grid does not.

This mapping will automatically compute the fillet given two intersecting surfaces. Various parameters control the resulting
surface:

orientation: There are 4 possible quadrants in which to place the fillet.

width: This distance defines the width over which the fillet blends between the two surfaces and thus determines how rounded
the fillet is. A width of zero will result in a collar grid which has a corner in it.

overlapWidth: Determines the distance to which the fillet extends onto each surface once it has touched the surface.

15.1 Description of Approach
Here are the basic steps that are used to create a fillet or collar grid:

intersect surfaces: Given two intersecting surfaces we first compute the curves(s) of intersection using the
I nt er secti onMappi ng. (For a 2D fillet grid the intersection curves are just the points of intersection.

generate surface grids: The next step is to generate a hyperbolic surface grid on each of the two surfaces, using the curve of
intersection as a starting curve (not necessary to do in 2D). The surface grid is grown in both directions from the starting
curve. The Hyper bol i cSur f aceMappi ng is used to generate these grids.

blend surface grids: The fillet grid is defined as a blending of the two surface grids. The precise description of this blending
is given below.

15.2 Fillet for two intersecting surfaces
To define a fillet to join two intersecting surfaces, S;, S we use
cy(r1) = Curve of intersection

c1(r1, 7o) = Grid on surface 1, with ¢y (r1,.5) = ¢7(r1)
co(r1,72) = Grid on surface 2, with co(r1,.5) = ¢7(rq)

If the parameter r is tangential to the intersection and r, varies in the direction normal to the intersection then the fillet is
defined by blending the two surface grids:

x = b(s)cy(r1, s1(r2)) + (1 = b(s))c(r1, s2(r2))
b= %(1 + tanh(B(rs — .5)))

where the parameter variables s;(r2) are chosen to be quadratic polynomials in 7,

si = aio(r1) +ra(a;i(r) + reaia(ry))
where

cio=.5 intersection point

¢in = ¢0 — pml[i] * .5 * filletWidth/cr Norm distance from intersection point for c1
Ci2 = ¢io — pmli] * (.5 * filletWidth + filletOverlap)/cr Normdistance from intersection point for c2
Ci3 = Cio +pmli] * shift .5« filletWidth/crNorm

a0 = Ci, 24

a1 = ¢i3—i — Cioti + (16./3.) % (¢;1 — T * ;a0 — .25 % ¢; 3)

a2 = —((16./3.) % (i1 — T x ci2 — 25 % ¢; 3))

15 FILLETMAPPING 90

15.3 setCurves

int

setCurves(Mapping & curvel,
Mapping & curve2)

Description: Supply the curves or surfaces from which the fillet will be defined.

curvel, curve2 (input):

154 map

void
map(const realArray & r, realArray & X, realArray & xr, MappingParameters & params)

Purpose: Evaluate the TFI and/or derivatives.

15,5 update
int
update(Mappinglnformation & maplnfo)

Purpose: Interactively create and/or change the Fillet mapping.

maplnfo (input): Holds a graphics interface to use.

15.6 examples
15.6.1 2D Fillet joining two lines

This is a 2D example showing a fillet that joins two line segments. These figures show the four possible fillets that can be
generated between intersecting curves (or surfaces).

FilletMapping FilletMapping
1.00 \ 1.00 \
075~ 075~
\\\ ////// : \ /////,
050 - P4 050 \
025 025
oo v 0w \\ oo v w0 \\
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
x1 x1
A fillet grid joining two lines. The orientation is cur ve A fillet grid joining two lines. The orientation is cur ve

1- to curve 2-. 1+ to curve 2-.

15 FILLETMAPPING 91

FilletMapping FilletMapping
1.00 < / 1.00 < /

075 / 075+

x2
x2

ovooi S S opot——— L L L N
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
x1 x1
A fillet grid joining two lines. The orientation is cur ve A fillet grid joining two lines. The orientation is cur ve
1- to curve 2+, 1+ to curve 2+,

15.6.2 Fillet to join two cylinders

In the left column is the command file that was used to generate the grid on the right.

Co~NoOOR~wWNE

fillet

exit
* build a volune grid around the fillet
hyperbolic

15 FILLETMAPPING

Cyl'i nder

orientation
120

bounds on the axial variable
-1, 1.

bounds on the radial variable
.5 .75

boundary conditions
-1-11230

mappi ngNane
mai n- cyl i nder

l'ines
31 21 6

exit

Cyl i nder

mappi ngNane
t op- cyl i nder

orientation
201

bounds on the axial variable
.25 1.

bounds on the radial variable
.3 .6

boundary conditions
-1-10230

l'ines
25 15 5

exit

0

w

* define nore lines for conputing the 1
l'i nes
81 41 41 21
Start curve 1:main-cylinder (side=0,a
Start curve 2:top-cylinder (side=0,ax
orient curve 1+ to curve 2-
conpute fillet
pause

.

—o0 UL

grow grid in opposite direction
di stance to march .2

points on initial curve 31 12
lines to march 7

uni form di ssipation .1

outward splay .25 .25 .25 .25 (left,ri
* show paraneters

BC:. bottom outward spl ay

BC. top outward spl ay

generate A fillet grid joining two cylinders. The fillet is created with the aid of
hyperbolic grid generation.

'

l'ines
31 12 6

mappi ngNane
cylinderFillet

share
0000O00O

exit

choose curves
mai n-cyl i nder (side=0, axi s=2)
top-cylinder (side=0, axi s=2)
orient curve 1- to curve 2+
conput e
* reduce the lines for actual fillet
l'ines
31 12

92

Co~NoUORwWNE

15 FILLETMAPPING

15.6.3 Fillet to join two spheres

In the left column is the command file that was used to generate the grid on the right.

* build a sphere
Sphere
surface or volunme (toggle)
mappi ngNamne
spherel
exit
* build a second sphere
Sphere
surface or volunme (toggle)
mappi ngNanme
sphere2
centre for sphere
.5 .5
exit
* build the fillet
fillet
Start curve 1:spherel
Start curve 2:sphere2
orient curve 1+ to curve 2-
conpute fillet

choose curves

spherel

sphere2

orient curve 1+ to curve 2-
conpute fillet

9
50

A fillet grid (green) joining two spheres.

93

16 INTERSECTIONMAPPING 94

15.7 HyperbolicMapping
See the separate document The Overture Hyperbolic Grid Generator [1].

16 IntersectionMapping

This mapping class can compute the intersection between two other mappings, such as the curve of intersection between two
surfaces. See the comments with the det er mi nel nt er sect i on function for a description of the fairly robust way in which
we find the intersection.

16.1 Constructor

IntersectionMapping()

Purpose: Default Constructor

Author: WDH

16.2 Constructor

IntersectionMapping(Mapping & mapl_,
Mapping & map2_)

Purpose: Define a mapping for the intersection of map1_and map2_

mapl_, map2_: two surfaces in 3D

16.3 intersect

int

intersect(Mapping & mapl_, Mapping & map2_,
GenericGraphicsinterface *gi =NULL,
GraphicsParameters & params =nullGraphicsParameters)

Description: Determine the intersection between two mappings, optionally supply graphic parameters so the intersection
curves can be plotted, (for debugging purposes). NEW FEATURE: If the intersection curve has disjoint segments,
these segments will be stored as sub curves in the NURBS for the physical and parameter curves on each surface.

mapl_, map2_ (input) : These two mappings will be intersected.
i, paramas (input) : Optional parameters for graphics.

Return value: 0 for success

16.4 intersect
int
intersectWithCompositeSurface(Mapping & mapl_, CompositeSurface & cs,

GenericGraphicsinterface *gi =NULL,
GraphicsParameters & params =nullGraphicsParameters)

Description: A Protected routine that computes the intersection between a Mapping and a CompositeSurface.
mapl_, map2_ (input) : These two mappings will be intersected.

gi, paramas (input) : Optional parameters for graphics.

Return value: 0 for success

Output: The output intersection curve is a NurbsMapping. The number of subcurves of this mapping defines the number of
disconnected components of the intersection.

16 INTERSECTIONMAPPING 95

16.5 newtonlntersection
int
newtonlIntersection(realArray & x, realArray & rl, realArray & r2, const realArray & n))

Description: This is a protected routine to determine the exact intersection point on two surfaces using Newton’s method.
Solve for (x,r1,r2) such that

mapl(rl) - x =0
map2(r2) - x =0
nx =c

X(.,3) (input/output) : initial guess to the intersection point (in the Range space)
r1(.,2) (input/output): initial guess to the intersection point (in the domain space of mapl)
r2(.,2) (input/output): initial guess to the intersection point (in the domain space of map2)

n(.,3) : a normal vector to a plane that crosses the intersection curve, often choosen to be n(i,.) = x(i+1,.) - x(i-1,.) if we are
computing x(i,.)

Return values: 0 for success. 1 if the newton iteration did not converge, 2 if there is a zero normal vector.

16.6 project

int

project(realArray & X,
int & iStart,
int & iEnd,

periodicType periodic)

Description: Project the points x(iStart:iEnd,0:6) onto the intersection NOTE: When the points are projected onto the curves
it is possible that points fold back on themselves if they get out of order. This routine will try and detect this situation
and it may remove some points to fix the problem. Return values: 0 for success, otherwise failure.

16.7 determinelntersection

int

determinelntersection(GenericGraphicsinterface *gi =NULL,
GraphicsParameters & params =nullGraphicsParameters)

Description: This is a protected routine to determine the intersection curve(s) between two surfaces.

Notes: (1) First obtain an initial guess to the intersection: Using the bounding boxes that cover the surface to determine a list
of pairs of (leaf) bounding boxes that intersect. Triangulate the surface quadrilaterals that are found in this “collision”
list and find all line segments that are formed when two triangles intersect.

(2) Join the line segments found in step 1 into a continuous curve(s). There will be three different intersection curves —
a curve in the Range space (x) and a curve in each of the domain spaces (r). Since the domain spaces may be periodic it
may be necessary to shift parts of the domain-space curves by +1 or -1 so that the curves are continuous. Note that the
domain curves will sometimes have to be outside the unit square. It is up to ?? to map these values back to [0,1] if they
are used.

(3) Now fit a NURBS curve to all of the intersection curves, using chord-length of the space-curve to parameterize the
three curves. (4) Re-evaluate the points on the curve using Newton’s method to obtain the points that are exactly on on
the intersection of the surfaces. Refit the NURBS curves using these new points.

Return values: 0 for success, otherwise failure.

16 INTERSECTIONMAPPING 96

16.8 map

int

reparameterize(const real & arcLengthWeight =1.,
const real & curvatureWeight =.2)

Purpose: Redistribute points on the intersection curve to place more points where the curvature is large.

Description: The default distribution of points in the intersection curve is equally spaced in arc length (really chord length).
To cluster more points near sharp corners, call this routine with a non-zero value for cur vat ur eWi ght . In this case
the points will be placed to equidistribute the weight function

w(r) = 1 + arcLength(r)*arcLengt hWi ght + curvature(r)*curvatureWi ght
wher e

arcLengt h(r)

curvature(r)

1
X X
- =
-

(*** this is not really the curvature, but close ***)

Note that the point distribution only depends on the ratio of arcLengthWeight to curvatureWeight and not on their absolute
vaules. The weight function must be positive everywhere. Also note that for the unit circle, |z,| = 27 and |z,..| = (27)?
so that the curvature is naturally 27 times larger in the weight function.

arcLengthWeight (input) : weight for the arc length, should be positive.

curvatureWeight (input) : weight for the curvature, should normally be non-negative.

16.9 intersectCurves
int
intersectCurves(Mapping & curvel,
Mapping & curve2,
int & numberOfintersectionPoints,
realArray & rl,
realArray & r2,
realArray & x)

Description: Determine the intersection between two 2D curves.

curvel, curve2 (input) : intersect these curves

numberOfintersectionPoints (output): the number of intersection points found.

r1,r2,x (output) : rl(i),r2(i),x(0:1,i) the intersection point(s) for i = 0,...,numberO fIntersectionPoints — 1 are

curvel(rl(i)) = curve2(r2(i)) = x(q)

16.10 map

void
map(const realArray & r, realArray & X, realArray & xr, MappingParameters & params)

Purpose: Evaluate the intersection curve.

16.11 get
int
get(const GenericDataBase & dir, const aString & name)

Purpose: get a mapping from the database.

16 INTERSECTIONMAPPING

16.12 put
int
put(GenericDataBase & dir, const aString & name) const

Purpose: put the mapping to the database.

16.13 update
int
update(Mappinglnformation & mapinfo)

Purpose: Interactively create and/or change the mapping.

maplnfo (input): Holds a graphics interface to use.

97

16

0.230

0.020

INTERSECTIONMAPPING

parametric curve rCurvel parametric curve rCurve?

0.730

0520

0.138 0471 0.529 0.862

x1 x1

@ (b)

Figure 8: The sphere-sphere intersection curve in the range space and the domain spaces (unit squares).

98

16

x2

INTERSECTIONMAPPING

0,750

Q0.500

0.250

99

parametric curve rCurvel

xZ
0437

187

1.000 1.250

x1

@

parametric curve rCurve?

D75

(b)

Figure 9: The cylinder-cylinder intersection curves in the range space and the domain spaces (unit squares). This is a reasonably
hard case since the cylinders have the same radius and thus the surfaces are tangent at two points.

16 INTERSECTIONMAPPING 100

wing—hody

parametric curve rCurvel parametric curve rCurve?
2
2 —
2
3
wn
[To e
L]
— Yo
 — 8]
i S S B R SRR
? 0.0C0 0.250 0.500 0.750
x1
2
5
0.416 0.584
@ (b)

Figure 10: Intersection curve for a wing-body configuration. The curve was reparameterized weighting arclength and curvature
in order to redistribute more points to the high curvature regions.

17 JOINMAPPING 101

17 JoinMapping

This mapping can be used to join together two Mappings that intersect. This is an alternative way to the Fi | | et Mappi ng to
connect two intersecting surfaces.

The protypical example of the use of a Joi nMappi ng is the intersection of a wing (the intersector mapping, i.e. the
mapping that will be changed) with a fuselage (the intersectee mapping). If the end of the wing does not match exactly to the
fuselage, there will be a part of of the wing that extends inside the fuselage. The Joi nMappi ng can be used to remove the
part of the wing that is inside the fuselage and reparameterize the rest of the wing so that the new wing matches exactly to the
fuselage.

17.1 A 2D example

In this first example we consider an annulus that intersects a circle. We generate a new mapping that consists of the portion of
the annulus that lies outside the circle.

0.00
-0.251
—0.50F
L . —0.75F
* join an annulus to a circle F
Annul us —1.00 B
exit -1.00
Circle or ellipse
specify centre
1.25 0
exit
join
choose curves
Annul us
circle
conpute join

Oo~NoUTR~wWNE

=
o

JoinMapping

e
N -

—000f-

—0.25 1

-050

—0.75

—1.00 L I T Lo i I
-100 -075 -050 -025 000 025 050
1

A new mapping (bottom) is generated that replaces the annulus by a partial
annulus that exactly matches to the circle.

17 JOINMAPPING 102

17.2 Intersecting surfaces

Consider the case where the intersector and intersectee Mappings are both surfaces in 3D. The Joi nMappi ng will first
compute the curve of intersection between the intersector and the intersectee mappings. The curve of intersection, as generated
by the | nt er sect i onMappi ng, will have three representations:

e A space curve x;(s), s € [0, 1]. matching the curve of intersection in physical space.

e A curve in parameter space of the intersector, r;(s), s € [0, 1], that is the pre-image of the space curve x;(s). Thus if
x = C;(r) denotes the intersector mapping, then x;(s) = C;(r;(s)).

e There is also a parametric curve for the intersectee mapping, r.(s), with x;(s) = C.(r;(s)), where C.(r) is the inter-
sectee mapping.

To reparmeterize the intersector mapping we first define a new mapping in the parameter space of the intersector that is bounded
on one side by the parametric intersection curve r;. In the typical case this new mapping can be defined by trans-finite interpo-
lation (TFI Mappi ng), such as

P(r) = (1 —ra)ri(r1) +ra(r1, 1)

In this case the curve r; is assumed to be mainly in the r; direction and we have chosen to extend the patch to ro = 1.
The Joi nMappi ng is now defined by the composite Mapping,

J(r) = Ci(P(r))
Through the definitions we see that J(r) will exactly match the curve of intersection at o = 0,

J(r1,0) = C;(P(r1,0)) = Ci(ri(r1)) = xi(r1)

[any
QOO ~NOUTRWNE

17 JOINMAPPING 103

ez

1h

) 1
Cyl i nder

orientation
120
bounds on the axial variable
-1, 1.
bounds on the radial variable
.5 .75
boundary conditions
-1-10030
mappi ngNane
mai n-cyl i nder
l'i nes
31 21 6
exit ——
Cyl i nder €0~ 000 agp 020 avg
mappi ngNane T
t op-cyl i nder
orientation
201
bounds on the axial variable
.25 1. i
bounds on the radial variable
.3 .4
boundary conditions 1
-1-10034
l'i nes
25 15 5
exit
join
choose curves
t op- cyl i nder W
mai n-cyl i nder (side=0, axi s=2)
conpute join
l'ines o
25 11 6 31 15 7
boundary conditions
-1-11110

»
4

U]
1)y

il
JUHRnny

LT ITTEATY

AT AR

LT

T

LI
1]

5
020~ &go- 00.0 ct.o han

A new surface mapping is generated (the upper ‘cylinder’ in the bottom
figure) that lies on the vertical cylinder and exactly matches to the
horizontal cylinder.

17.3 Intersecting a volume intersector mapping with a surface intersectee mapping.

Suppose now that intersector Mapping defines a volume mapping, R? — R3. The JoinMapping can be used to build a new
volume Mapping that will match exactly to the intersectee surface.

In this case we assume that two sides of the intersector mapping intersect the intersectee mapping, say, C;(r1,72,0) and
C;(r1,72,1). We proceed as before to generate a Joi nMappi ng for each of these intersecting surfaces, J,,,(r), m = 1,2.
We also generate a third...

©o~NoOUTR~WNE

17 JOINMAPPING 104

Cyl i nder
orientation
120
bounds on the axial variable
-1, 1.
bounds on the radial variable
.5 .75
boundary conditions
-1-10030
mappi ngNane
mai n-cyl i nder
i nes
31 21 6
exit
Cyl i nder
mappi ngName
t op-cyl i nder
orientation
201
bounds on the axial variable
.25 1.
bounds on the radial variable
.3 .4
boundary conditions
-1-10034
l'i nes
25 15 5
exit
join

choose curves
t op-cyl i nder
mai n-cyl i nder (side=0, axi s=2)
conpute join

l'i nes

25 11 6 31 15 7

boundary conditions
-1-11110

A new volume mapping is generated that lies on the vertical cylinder and
exactly matches to the horizontal cylinder.

17.4 setEndOfJoin
int
setEndOfJoin(const real & endOfJoin_)

Description: Specify the r value for the end of the join opposite the curve of intersection.

endOfJoin_ (input) : a value in [0,1].

17 JOINMAPPING 105

175 map

void
map(const realArray & r, realArray & X, realArray & xr, MappingParameters & params)

Purpose: Evaluate the TFI and/or derivatives.

17.6 update
int
update(Mappinglnformation & mapinfo)

Purpose: Interactively create and/or change the Join mapping.

maplnfo (input): Holds a graphics interface to use.

17 JOINMAPPING

17.7 Class LineMapping

This mapping a line in one, two or three dimensions.

x(r) = zq+r(Ty—T4)
X(T’) = (Iaa ya) =+ T’(Z‘b —Za>,Yb — ya)
X(’I“) = (xa,ya,za) +T(xb —ZTar,Yb — Yas 20 _Za)

17.8 Constructor

LineMapping(const real xa._,
const real xb_,
const int numberOfGridPoints)

Description: Build a mapping for a line in 1D.

xa_, Xb_ (input) : End points of the interval.

17.9 Constructor

LineMapping(const real xa_,const real ya_,
const real xb_,const real yb_,
const int numberOfGridPoints)

Description: Build a mapping for a line in 2D.

xa_, ya_, xb_, yb_ (input) : End points of the line.

17.10 Constructor

LineMapping(const real xa_,const real ya_,const real za_,
const real xb_,const real yb_,const real zb_,
const int numberOfGridPoints)

Description: Build a mapping for a line in 3D.

xa., ya_,za_, xb_, yb_zb_ (input) : End points of the line.

17.11 getPoints
int
getPoints(real & xa_, real & xb_) const

Description: Get the end points of the line.

xa_, Xb_ (output) : End points of the line.

17.12 getPoints
int
getPoints(real & xa_, real & ya_,
real & xb_, real & yb_) const

Description: Get the end points of the line.

xa_, ya_, xb_, yb_ (output) : End points of the line.

106

17 JOINMAPPING

17.13 getPoints
int
getPoints(real & xa_, real & ya_, real & za_,
real & xb_, real & yb_, real & zb_) const

Description: Get the end points of the line.

xa_, ya_,za_, xb_, yb_zb_(output) : End points of the line.

17.14 setPoints
int
setPoints(const real & xa_, const real & xb_)

Description: Specify the end points for a line in 1D.

xa_, Xb_ (input) : End points of the interval.

17.15 setPoints

int

setPoints(const real & xa_, const real & ya_,
const real & xb_, const real & yb_)

Description: Specify the end points for a line in 2D.

xa_, ya_, xb_, yb_ (input) : End points of the line.

17.16 setPoints

int

setPoints(const real & xa_, const real & ya_, const real & za_,
const real & xb_, const real & yb_, const real & zb_)

Description: Specify the end points for a line in 3D.

xa_, ya_,za_, xb_, yb_zb_(input) : End points of the line.

107

18 MATRIXMAPPING: DEFINE A MAPPING FROM SCALINGS, SHIFTS AND ROTATIONS 108

18 MatrixMapping: define a mapping from scalings, shifts and rotations

This mapping can be used for rotations, scalings and shifts or any transformation that can be represented as a matrix times a
vector. The mapping is defined by a 4 x 4 matrix that maps from r to = by the relation

x1 Moo M1 M2 1MMo3 ™
Z2 _ Mio Mi11 Mi2 MMa3 T2
€3 N Mmao M21 MM22 123 3

0 0 0 1 1

Each time the functions r ot at e, scal e and shi ft are called the current mat ri x is updated and thus the transforma-

tions are cummulative. _ _
Here is an example of the use of the Mat r i xMappi ng class.

#i nclude "Overture. h"

void main()

{
real Array r(1,3);
real Array x(1,3);
real Array xr(1,3,3);

Mat ri xMappi ng rot Scal eShift /1 Define a matrix mapping

rot Scal eShift.rotate(axis3, Pi/2.); [/ rotate about the x_3 axis
rot Scal eShift.scale(2.,1.,1.); /] scale by 2 in x_1-direction
rot Scal eShift.shift(0.,1.,0.); /1 shift by 1 in x_2 direction
r=.5;

rot Scal eShi ft.map(r, x, xr);

18.1 Constructor

MatrixMapping(int domainDimension_= 3,
int rangeDimension_ = 3)

Purpose: Build a matrix mapping. This is normally used with the Mat r i xTr ansf or mto rotate, scale, or translate an existing
mapping.

domainDimension_, rangeDimension_ (input) : domain and range dimension.

18.2 rotate

void
rotate(const int axis, const real theta)

Purpose: Perform a rotation about a given axis. This rotation is applied after any existing transformations. Use the reset
function first if you want to remove any existing transformations.

axis (input) : axis to rotate about (0,1,2)

theta (input) : angle in radians to rotate by.

18.3 rotate

void
rotate(const RealArray & rotate)

Purpose: Perform a “rotation” using a 3 x 3 matrix. This does not really have to be a rotation. This transformation replaces
any existing transformation.

rotate (input): The upper 3 x 3 portion of the 4 x 4 transformation matrix will be replaced by the matrix r ot at e(0: 2, 0: 2) .

18 MATRIXMAPPING: DEFINE A MAPPING FROM SCALINGS, SHIFTS AND ROTATIONS 109

18.4 scale

void

scale(const real scalex =1.,
const real scaley =1.,
const real scalez =1.)

Purpose: Perform a scaling

scalex, scaley, scalez (input): Scale factors along each axis.

18.5 shift

void

shift(const real shiftx =0.,
const real shifty =0.,
const real shiftz =0.)

Purpose: Perform a shift.

shitx, shity, shitz (input): shifts along each axis.

18.6 reset

void
reset()

Purpose: reset the matrix to the identity.

18.7 matrixMatrixProduct

void
matrixMatrixProduct(RealArray & m1, const RealArray & m2, const RealArray & m3)

Purpose: Multiply two 4x4 matrices together. This is a utility routine (a static member function that can be called without a
MatrixMapping object using MatrixMapping::matrixMatrixProduct(...)).

m <- nm*nB8

18.8 matrixVectorProduct

void
matrixVectorProduct(RealArray & v1, const RealArray & m2, const RealArray & v3)

Purpose: Multiply a 4x4 matrix times a vector. This is a utility routine (a static member function).

vl <- nRk*v3

18.9 matrixInversion
int
matrixInversion(RealArray & mlinverse, const RealArray & ml)

Purpose: Invert a 4x4 matrix. This is a utility routine (a static member function). This only works for matrices used in
transforming 3D vectors which look like:

18 MATRIXMAPPING: DEFINE A MAPPING FROM SCALINGS, SHIFTS AND ROTATIONS 110

[a00 a01 a02 a03]
[al10 all al2 al3]
[a20 a21 a22 a23]
[O 0O O 1]

Return value: 0=success, 1=matrix is not invertible

19 MATRIXTRANSFORM: ROTATE, SCALE OR SHIFT AN EXISTING MAPPING 111

19 MatrixTransform: rotate, scale or shift an existing mapping

19.1 Description

The Mat ri xTr ansf or mmapping can be used to rotate, scale and shift another mapping. It does this by composing the given
mapping with a Mat r i xMappi ng, section (18).

19.2 Constructor

MatrixTransform()

Purpose: Build a mapping for matrix transform.

19.3 Constructor(Mapping&)
MatrixTransform(Mapping & map)

Purpose: Build a Mapping for matrix transformation of another Mapping.

19.4 reset

void
reset()

Purpose: Reset the transformation to the identity.

19.5 rotate

void
rotate(const int axis, const real theta)

Purpose: Perform a rotation about a given axis.
axis (input) : axis to rotate about (0,1,2)

theta (input) : angle in radians to rotate by.

19.6 rotate

void
rotate(const RealArray & rotate)

Purpose: Perform a rotation using a 3 x 3 “rotation” matrix. This does not really have to be a rotation.

rotate (input): The upper 3 x 3 portion of the 4 x 4 transformation matrix will be replaced by the matrix r ot at e(0: 2, 0: 2) .

19.7 scale
void
scale(const real scalex =1.,

const real scaley =1,
const real scalez =1.)

Purpose: Perform a scaling

scalex, scaley, scalez (input): Scale factors along each axis.

19 MATRIXTRANSFORM: ROTATE, SCALE OR SHIFT AN EXISTING MAPPING 112

19.8 shift

void

shift(const real shiftx =0.,
const real shifty =0.,
const real shiftz =0.)

Purpose: Perform a shift.

shitx, shity, shitz (input): shifts along each axis.

20 NORMALMAPPING: DEFINE A NEW MAPPING BY EXTENDING NORMALS 113

20 NormalMapping: define a new mapping by extending normals

20.1 Description

The Nor mal Mappi ng extends normals from an existing curve or surface to generate a new mapping.

—_—

surface

—

normalDistance

Figure 11: The NormalMapping defines a new mapping by extending normals from a given curve or surface

20.2 Member Functions

20 NORMALMAPPING: DEFINE A NEW MAPPING BY EXTENDING NORMALS 114

ormalMappingInclude.tex

21 NURBSMAPPING: DEFINE A NEW MAPPING ASA NURBS. 115

21 NurbsMapping: define a new mapping as a NURBS.

***** This class is still under development ******

The Nur bsMappi ng class defines mapings in terms of a non-uniform rational b-spline, NURBS. The implementation here
is based on the reference, The NURBS Book Les Piegl and Wayne Tiller, Springer, 1997.

The n-th degree Berstein polynomial is

and the n-th degree Bezier curve

with control points P;.
The n-th degree rational Bezier curve is

o Bin P
C(U) _ 22:0) (u)w 0<u < 1

Z?:o Bi n(u)w; ’ N

with weights w;.
Written using homogeneous coordinates

where P = (w;P;, w;).
B-spline basis functions are defined as

1w <u<uyy
N@O(u):{ w; <u < Ujgy

0 otherwise
U — U Uitp+1 — U
N; =—N, —N; _
ip() Uity — Ui ip—1(u) + Uirptl — Uiee i+1,p—1(u)
where U = {uq, ..., unm,} are the knots, u; < u;41.
We only use nonperiodic (clamped or open) knot vectors,
U=A{a,...,a,Upt1, -, Um—p—1,0,...,b}
with the end knots repeated p + 1 times.
NonUniform Rational B-Spline (NURBS). p-th degree NURBS curve
C(U) — Zi:no Ni»p(“)wipi’ a S u S b
2ico Nip(ww;
n
= Z Ri7p(U)PL
=0

Written using homogeneous coordinates

21.1 Constructor
NurbsMapping()
Purpose: Default Constructor, make a null NURBS.

Remarks: The implementation here is based on the reference, The NURBS Book by Les Piegl and Wayne Tiller, Springer,
1997. The notation here is:

21 NURBSMAPPING: DEFINE A NEW MAPPING ASA NURBS. 116

e degree = p (variables p1,p2 for one and 2D)

e number of control points is n+1 (variables n1,n2)

e number of knots is m+1 (m=n+p+1) (variables m1,m2)

e cPoint(0:n,0:r) : holds the control points and weights. r=rangeDimension.

e uKnot(0:m) : holds knots along axis1. These are normally scaled to [0,1] (see notes below).
e vKnot(0:m) : holds knots along axis2 (if domainDimension==2)

e note : Knots are scaled to [0,1]

NOTES: for those wanting to make changes to this class

uMin,uMax,vMin,vMax : A typical NURBS will have knots that span an arbitrary interval. For example the knots may
go from [.5,1.25]. This mapping however, is parameterized on [0,1]. To fix this we first save the actual min and max
values for uKnot in [uMin,uMax] and similarly for [vMin,vMax]. We then rescale uKnot and vKnot to lie on the interval
[0,1]. Note that the r epar anet er i ze function may subsequently rescale the knots to a larger interval in which case the
NURBS will only represent a part of the initial surface. If we do this then we also rescale uMin,uMax,vMin,vMax. The
par anet ri cCur ve function is used to indicate that this NURBS is actually a parametric curve on another NURBS,
nurbs2. By default the values of uMin,uMax,vMin,vMax from nurbs2 are used to scale this NURBS in order to make it

compatible with the rescaled nurbs2.

21.2 Constructor

NurbsMapping(const int & domainDimension_, const int & rangeDimension_)

Purpose: Constructor, make a default NURBS of the give domain dimension (1,2)

21.3 intersect3DLines

int

intersect3DLines(realArray & pt0, realArray & t0,
realArray & ptl, realArray & t1,

real & alpha0, real & alphal,
realArray & pt2)

Description: Intersect two lines in 3D: x0(s) = pt0 + s * t0 x1(t) = ptl +t * t1
alpha0,alphal : values of s and t at the intersection.
pt2 : point of intrsection, x0(alpha0)=pt2=x1(alphal)

Return values: 1 if the line are parallel, 0 otherwise.

21.4 buildCurveOnSurface

int

buildCurveOnSurface(NurbsMapping & curve,
real rO,
real r1 =1.)

Description: Build a new Nurbs curve that matches a coordinate line on the surface.
curve (output) : on output a curve that matches a coordinate line on the surface.

rO,rl (input) : if rl1==-1 make a curve c(r) = s(r0,r) where s(ro,71) is the NURBS surface defined by this mapping
r0==-1 make the curve c(r) = s(r,r1) the arc, measured starting from x.

f

21 NURBSMAPPING: DEFINE A NEW MAPPING ASA NURBS. 117

215 circle

int

circle(realArray & o,
realArray & X,
realArray &y,
real r,

real startAngle =0.,
real endAngle =1.)

Description: Build a circular arc. Reference the NURBS book Algorithm A7.1
o (input): center of the circle.
X,y (input): orthogonal unit vectors in the plane of the circle.

startAngle,endAngle : normalized angles [0,1] for the start and end of the arc, measured starting from x.

21.6 getKnots

const realArray &
getKnots(int direction =0) const

Purpose: get uKnot or vKnot, the knots in the first or second direction.

direction: O=return uKnot, 1= return vKnot.

21.7 getControlPoints

const realArray &
getControlPoints() const

Purpose: Return the control points, scaled by the weight.

21.8 insertKnot
int
insertKnot(const real & uBar,
const int & numberOfTimesTolnsert_=1)

Purpose: Insert a knot
uBar (input): Insert this knot value.
numberOfTimesTolnsert_ (input): insert the knot this many times. The multiplicity of the knot will not be allowed to exceed

pl.

21.9 insertKnot
int
normalizeKnots()

Access: Protected routine.

Purpose: Normalize the knots, uKnot (and vKnot if domainDimension==2) to lie from 0 to 1. This routine will NOT change
the values of uMin,uMax, vMin,vMax since these values indicate the original bounds on uKnot and vKnot.

21 NURBSMAPPING: DEFINE A NEW MAPPING ASA NURBS. 118

21.10 readFromlgesFile
int
readFromigesFile(IgesReader & iges, const int & item, bool normKnots /*=true*/)

Purpose: Read a NURBS from an IGES file. An IGES file is a data file containing geometrical objects, usually generated by
a CAD program.

iges (input) : Use this object to read the IGES file.

item (input) : read this item from the IGES file.

21.11 parametricCurve
int
parametricCurve(const NurbsMapping & nurbs,
const bool & scaleParameterSpace = TRUE)

Purpose: Indicate that this nurb is actually a parametric curve on another nurb surface.
nurbs (input) : Here is the NURBS surface for which this NURBS is a parametric surface.

scaleParameterSpace (input) : if TRUE, scale the range space of this nurb to be on the unit interval. This is usually required
since the NurbsMapping scales the knots to lie on [0,1] (normally) and so we then need to scale this Mapping to be
consistent.

21.12 shift
int
shift(const real & shiftx =0.,

const real & shifty =0.,
const real & shiftz /* =0.*/)

Purpose: Shift the NURBS in space.

21.13 scale
int
scale(const real & scalex =0.,

const real & scaley =0.,
const real & scalez /* =0.*/)

Purpose: Scale the NURBS in space.

21.14 rotate
int
rotate(const int & axis, const real & theta)

Purpose: Perform a rotation about a given axis. This rotation is applied after any existing transformations. Use the reset
function first if you want to remove any existing transformations.

axis (input) : axis to rotate about (0,1,2)

theta (input) : angle in radians to rotate by.

21 NURBSMAPPING: DEFINE A NEW MAPPING ASA NURBS. 119

21.15 rotate
int
matrixTransform(const RealArray & m)

Purpose: Perform a general matrix transform using a 2x2 or 3x3 matrix. Convert the NURBS to 2D or 3D if the transformation
so specifies —i.e. if you transform a NURBS with rangeDimension==2 with a 3x3 matrix then the result will be a NURBS
with rangeDimension==3.

m (input) : m(0:2,0:2) matrix to transform with

21.16 specify knots and control points

int

specify(const int & m,
const int & n,
const int & p,

const realArray & knot,

const realArray & controlPoint,
const int & rangeDimension_ =3,
bool normalizeTheKnots /* =true*/)

Purpose: Specify a curve in 2D or 3D using knots and control points

m (input) : The number of knots is m+1

n (input) : the number of control points is n+1

p (input) : order of the B-spline

controlPoint(0: n,0:rangeDimension) (input) : control points and weights

normalizeTheKnots (input) : by default, normalize the knots to [0,1]. Set to false if you do not want the knots normalized.

21.17 specify knots and control points
int
specify(const int & nl_,
const int & n2_,
const int & p1.,
constint & p2_,
const realArray & uKnot_,
const realArray & vKnot_,
const realArray & controlPoint,
const int & rangeDimension_ =3,
bool normalizeTheKnots /* =true*/)

Purpose: Specify a NURBS with domainDimension==2 using knots and control points
nl_n2_(input) : the number of control points is n1+1 by n2+1

pl_p2_(input) : order of the B-spline in each direction.

uKnot_vKnot_ (input) : knots.

controlPoint(0: n1,0:n2,0:rangeDimenion) (input) : control points and weights

normalizeTheKnots (input) : by default, normailize the knots to [0,1]. Set to false if you do not want the knots normalized.

21 NURBSMAPPING: DEFINE A NEW MAPPING ASA NURBS. 120

21.17.1 setDomainlnterval

int

setDomainlnterval(const real & r1Start =0.,
const real & rlEnd =1.,
const real & r2Start =0.,
const real & r2End =1.,
const real & r3Start =0.,
const real & r3End =1.)

Description: Restrict the domain of the nurbs. By default the nurbs is parameterized on the interval [0,1] (1D) or [0,1]x[0,1]
in 2D etc. You may choose a sub-section of the nurbs by choosing a new interval [rStart,rEnd]. For periodic nurbss the
interval may lie in [-1,2] so the sub-section can cross the branch cut. You may even choose rEndirStart to reverse the
order of the parameterization.

rStartl,rEnd1,rStart2,rEnd2,rStart3,rEnd3 (input) : define the new interval.

21.18 initialize()

void

initialize()

Purpose: Initialize the NURBS. This is a protected routine. Determine if the weights are constant so that we can use more
efficient routines. Set bounds for the Mapping.

NOTES: Normally we multiply the control points by the weights. BUT, if the weights are constant we divide everything
by this constant value so we can avoid dividing by the weight term when we evaluate. When the weights are constant
nonUni f or mAéi ght s==f al se;

21.19 setBounds

void
setBounds()

Purpose: protected routine. Set the approximate bounds on the mapping, used by plotting routines etc. Use the control points
as an approximation *** note only apply this to the normalized control-points ***

21.20 removeKnot

int

removeKnot(const int & index,

const int & numberOfTimesToRemove,
int & numberRemoved, const real & tol)

Purpose: Remove a knot (if possible) so that the Nurbs remains unchanged
index (input) : try to remove the knot at this index
numberOfTimesToRemove (input) : the number of times to try and remove the knot.

numberRemoved (output): the actual number of times the knot was removed

21.21 getParameterBounds

int

getParameterBounds(int axis, real & rStart_, real & rEnd_) const
Purpose: Return current values for the parameter bounds.

axis (input) : return bounds for this axis.

rStart_, rEnd_: bounds.

21 NURBSMAPPING: DEFINE A NEW MAPPING ASA NURBS. 121

21.22 reparameterize

int

reparameterize(const real & uMin_,
const real & uMax_,

const real & vMin_=0.,
const real & vMax_=1.)

Purpose: Reparameterize the nurb to only use a sub-rectangle of the parameter space. This function can also be used to reverse
the direction of the parameterization by choosing uMin > uMax and/or vMin > vMax.

uMin,uMax (input): subrange of u values to use, normally 0 < uMin # uMax < 1
vMin,vMax (input): subrange of v values to use, normally 0 < vMin # vMax < 1 (for domainDimension==2)

Notes: this routine just scales the knots to be on a larger interval than [0,1]. Thus when the Mapping is evaluated on [0,1] the
result will only be a portion of the original surface.

Return values: 0 : success, 1 : failure

21.23 transformKnots

int

transformKnots(const real & uScale,
const real & uShift,

const real & vScale =1.,
const real & vShift =0.)

Purpose: Apply a scaling and shift to the to the knots: uScale*uKnots+uShift. The scale factors should be positive.
uScale,uShift (input): scaling and shift for the knots in the u direction.

vScale,vShift (input): scaling and shift for the knots in the v direction. (for domainDimension==2)

21.24 elevateDegree

int

elevateDegree(const int increment)
Purpose: Elevate the degree of the nurbs.

increment (input): increase the degree of the nurb by this amount /=0

Return values: 0 : success, 1 : failure

21.25 merge
int
merge(NurbsMapping & nurbs, bool keepFailed = true, real eps /*=-1*/, bool attemptPeriodic /*=true*/)

Purpose: Try to merge "this” nurbs with the input nurbs. This routine will merge the two NURBS’s into one if the endpoint
of one matches the end point of the second.

nurbs (input): nurbs to merge with

Return values: 0 : success, 1 : failure

21 NURBSMAPPING: DEFINE A NEW MAPPING ASA NURBS. 122

21.26 forcedMerge
int
forcedMerge(NurbsMapping & nurbs)

Purpose: Force a merge of "this” nurbs with the input nurbs. This routine will merge the two NURBS’s into one if the endpoint
of one matches the end point of the second. If the endpoints do not match, a straight line section is added between the
closest end points.

nurbs (input): nurbs to merge with

Return values: 0 : success, 1 : failure

21.27 forcedPeriodic
int
forcePeriodic()

Purpose: force this mapping to be periodic by making the last control points the same as the first (if the knots are ”clamped”,
eg the knotsare0000...1111)

Return values: 0 : success, 1 : failure

21.28 split

int

split(real uSplit, NurbsMapping &c1, NurbsMapping&c2)
Description: Split a nurb curve into two pieces.

uSplit (input) : parameter value to split the curve at

cl (output) : curve on the "left”, parameter bounds [0,uSplit]
c2 (output) : curve on the "right”, parameter bounds [uSplit,1]

Returns : 0 on success, 1 on failure (uSplitj0 or uSplit;1)

21.29 moveEndpoint
int
moveEndpoint(int end, const realArray &endPoint, real tol /*=-1*/)

Description: Move either the beginning or the end of the curve to endPoint.

21.30 numberOfSubCurves
int
numberOfSubCurves() const

Description: If the Nurb is formed by merging a sequence of Nurbs then function will return that number. By default the
numberOfSubCurves would be 1 if no Nurbs were merged.

21.31 numberOfSubCurvesinList
int
numberOfSubCurveslnList() const

Description: Return the number of subcurves used to build the Nurb plus the number of hidden curves By default the num-
berOfSubCurvesinList would be 1 if no Nurbs were merged.

21 NURBSMAPPING: DEFINE A NEW MAPPING ASA NURBS. 123

21.32 subCurve

NurbsMapping&
subCurve(int subCurveNumber)

Description: If the Nurb is formed by merging a sequence of Nurbs then function will return that Nurbs. If the numberOfSub-
Curves is 1 then the current (full) Nurbs is returned.

21.33 subCurveFromList

NurbsMapping &
subCurveFromList(int subCurveNumber)

Description: Return a nurb curve directly from the list of subcurves. This can be a curve used to generate the nurb itself or
one of the "hidden” curves. If the numberOfSubCurves is 1 then the current (full) Nurbs is returned.

21.34 interpolate

void

interpolate(const realArray & X,
const int & option =0,

realArray & parameterization =Overture::nullRealDistributedArray(),
int degree = 3)

Purpose: Define a new NURBS curve that interpolates the points x(0:n1,0:r-1) OR define a new NURBS surface that inter-
polates the points x(0:n1,0:n2,0:r-1) (NEW feature). By default the NURBS curve will be parameterized by a the chord
length.

option (input) : if(option==0 then use the array parameterization. if option==1 then return the parameterization used in the
array parameterization.

parameterization_(0: nl) (input) : optionally specify the parameterization. These values should start from 0, end at 1 and be
increasing. If this argument is not given then the parameterization will be based on chord length. If option==1 then the
actual parameterization used will be returned in this array.

degree (input) : degree of approximation. Normally a value such as 1,2,3.

21.35 map
I/ void
Il

/ IPurpose: Evaluate the nurbs and/or derivatives.

21.36 mapVector
I void
Il

/ IPurpose: Evaluate the nurbs and/or derivatives. This routine is a // version of the map function that is optimized for vectors
of points.

21.37 put(fileName)

int

put(const aString & fileName, const FileFormat & fileFormat = xxww)
Description: put NURBS data into an ascii readable file.

fileName (input) : name of the file.

fileFormat (input) : specify the file format. (see the comments with the get(const aString&,...) function).

21 NURBSMAPPING: DEFINE A NEW MAPPING ASA NURBS. 124

21.38 put(FILE¥)

int
put(FILE *file, const FileFormat & fileFormat = xxww)

Description: Save the NURBS data to an ascii readable file.

fileFormat (input) : specify the file format. (see the comments with the get(const aString&,...) function).

21.39 get(fileName)

int

get(const aString & fileName, const FileFormat & fileFormat = xxww)
Description: read NURBS data from an ascii readable file.

fileName (input) : get from this file.

fileFormat (input) : specify the file format.
Here is the file format for f i | eFor mat =xxww for a surface in 3D

donmai nDi mensi on rangeDi nensi on pl nl p2 n2

uKnot (0) uKnot (1) ... uKnot(nl) --- on possibly multiple lines, at nbst 10 val ues per Ii
vKnot (0) vKnot (1) ... vKnot(nR)

x0 x1 x2 ... --- x coords of control pts. on multiple lines, at nost 10 per Ii
yo yl1l y2 ... --- y coords of control pts.

z0 z1 z2 ... --- z coords of control pts.

wo wl w2 ... --- weights of control pts.

If the domainDimension==1 then leave off p2 and n2. If the rangeDimension is 2 then leave off the z values. Here
ml=nl+pl+1 and m2=n2+p2+1.

Here is the file format for f i | eFor mat =xwxw for a surface in 3D

dormai nDi nensi on rangeDi mensi on pl nl p2 n2

uKnot (0) uKnot (1) ... uKnot(nl) --- on possibly multiple lines, at nobst 10 val ues per i
vKnot (0) vKnot (1) ... vKnot (nR)

x0 y0 z0 w0 --- control point O

x1 yl z1l wl --- control point 1

x1 vyl zl wl --- control point 2

If the domainDimension==1 then leave off p2 and n2. If the rangeDimension is 2 then leave off the z values.

21.40 put(FILE *)

int

get(FILE *file, const FileFormat & fileFormat = xxww)
Description: read NURBS data from an ascii readable file.
file (input) : get from this file.

fileFormat (input) : specify the file format. (see the comments with the get(const aString&,...) function).

21.41 getOrder
int
getOrder(int axis =0) const

Purpose: Return the order, p.

21 NURBSMAPPING: DEFINE A NEW MAPPING ASA NURBS. 125

21.42 getNumberOfKnots
int
getNumberOfKnots(int axis =0) const

Purpose: Return the number of knots, m+1.

21.43 getNumberOfControlPoints
int
getNumberOfControlPoints(int axis =0) const

Purpose: Return the number of control points, n+1.

21.44 buildSubCurves
int
buildSubCurves(real angle =60.)

Purpose: Split a NURBS curve at corners into sub-curves. Currently this only applies if the order of the NURBS is 1 (piece-
wise linear).

angle (input) : divide the curve at points where the tangent changes by more than this angle (degrees)

21.45 truncateToDomainBounds
int
truncateToDomainBounds()

Purpose: clip the knots and control polygon to the bounds set in rstart and rend

21.46 toggleSubCurveVisibility
int
toggleSubCurveVisibility(int sc)

Description: Toggle a subcurve’s "visibility”, a visible subcurve is accessible through NurbsMapping::subCurve(..) method
an invisible subcurve is only accessible through NurbsMapping::subCurveFromList()

sc (input) : the subcurve to toggle Returns : the new subcurve number NOTES : this will reorder the subcurves in the subCurves
array

21.47 isSubCurveHidden

bool
isSubCurveHidden(int sc)

Description: find out if a subcurve is hidden or not, returns true if hidden, false if visible

sc (input) : the subcurve to querry

21.48 isSubCurveOriginal

bool
isSubCurveOriginal(int sc)

Description: find out if a subcurve is marked as "original”

sc (input) : the subcurve to querry

21 NURBSMAPPING: DEFINE A NEW MAPPING ASA NURBS. 126

21.49 toggleSubCurveOriginal

void
toggleSubCurveOriginal(int sc)

Description: toggle the “original” status on a subcurve, “original” is just a marker used to distingish the original subcurves
used to build this nurb from subsequent modifications.

sc (input) : the subcurve to alter

21.50 addSubCurve
int
addSubCurve(NurbsMapping &nurbs)

Description: Add a subcurve to this mapping. Note that the nurb is copied and is set to visible. The "original” marker is set to
false;

Returns : the index of the new curve in the list of visible curves

21.51 deleteSubCurve

int

deleteSubCurve(int sc)

Description: Delete a subcurve from the list of curves. Note this shifts the subcurve list making previous indices invalid

sc (input): the curve to delete

Returns : 0 on success

21.52 update
int
update(Mappinglnformation & maplnfo)

Purpose: Interactively create and/or change the nurbs mapping.

maplnfo (input): Holds a graphics interface to use.

21 NURBSMAPPING: DEFINE A NEW MAPPING AS A NURBS.

21.53 Examples

nurbsMapping

%2

075~

0.50 —

0.00 . L L . | . . . L 1 | . .
0.00 0.25 0.50 075 1.00
x1

A 2D NURBS curve defined by specifying control points.

o oo
SIS

A 3D NURBS surface defined by specifying control points.

127

22 OFFSETSHELL: DEFINE MAPPINGS TO BUILD A GRID AROUND A SHELL OR PLATE. 128

22 OffsetShell: Define mappings to build a grid around a shell or plate.

The OffsetShell class starts with a 3D surface defining a thin shell or plate (this is called the reference surface). An offset
surface will be built by translating the reference surface a small amount in a user specified direction. An edge surface will then
be constructed that joins the reference and offset surfaces with a rounded edge that overlaps both surfaces.

Volume grids can be built for the reference, offset and edge surfaces.

nurb

Figure 12: The original reference surface for a flying carpet given to OffsetShell.

22.1 Defining the edge surface : an overlapping round

The first step in defining the edge surface is to define a smooth curve on the reference surface that smoothly follows the boundary
of the reference surface but is offset a small amount inside the boundary. To define this curve we first construct a smooth curve,
co(t) = (ro,r1)(t), near the boundary of the unit square:

(1—Ap,.5+¢) 0<¢<t

(I1-A1—=&1—-Ag) t1 <E<ty

co(t) = ¢ (Ao, 1 — Ay =) t3 <<ty

(A1 +&,) ts <& <tg

(I—AO,Al—l-f) ty < €<ty
to=.5— A4

The curve on the reference surface is defined as c¢(¢) = R(cq(t)) where x(r) = R(r) defines the reference surface.
Given the edge curve c(t) we can define the tangent vector t(¢) to the curve as well as the vector normal to the reference
surface, n(t).

(1) = ¢/l¢]l
n(t) = gfz(co(t)) X g_i(c()(t))

Given t(t) and n(¢) we define the direction vector, d(t), at each point on the edge curve to be orthogonal to these two vectors
and point towards the boundary of the reference surface,

d(t) =t x n/[t x n

22 OFFSETSHELL: DEFINE MAPPINGS TO BUILD A GRID AROUND A SHELL OR PLATE. 129

Figure 13: An edge curve c(t) is defined on the unit square.

Figure 14: The reference surface, offset surface, and edge surface near a corner.

The edge surface defined as 3 sections, an initial and final portion that lie on the reference surface connected by half a circle:

c(t) + agsd(t) 0<s<sg
e(t,s) = < e(t,so) + .5(1 — cos(#))s +sin(f)ard(t) sop < s<s;
e(t,s1) —ao(l — s)d(t) s1<s<1

0 =m(s—s0)/(s1— o)

22.2 Member function descriptions
22.3 Constructor
OffsetShell()

Description: Starting from a 3D reference surface build an offset surface and joining edge surface.

22.4 buildOffsetMappings
int
buildOffsetMappings(GenericGraphicsinterface & gi,
GraphicsParameters & parameters, MappingInformation & mapinfo)

22 OFFSETSHELL: DEFINE MAPPINGS TO BUILD A GRID AROUND A SHELL OR PLATE. 130

Figure 15: The overlapping grid for the flying carpet in a box.

Description: Given a reference surface, build an offset surface, and then an edge surface to join two. Build volume grids for
the reference surface, offset surface and edge surface.

referenceSurface (input) :
offsetSurface (output) :
edgeSurface, edgeVolume (output):

referenceVolume, offsetVolume (output) :

22.5 generateVolumeGrids
int
generateVolumeGrids(GenericGraphicsinterface & gi,
GraphicsParameters & parameters, MappingInformation & mapinfo)

Description: Build the volume grids.

22.6 createOffsetMappings
int
createOffsetMappings(MappingInformation & mapinfo)

Description: Interactively build grids for a thin shell.

23 ORTHOGRAPHICTRANSFORM : DEFINE AN ORTHOGRAPHIC TRANSFORM

23 OrthographicTransform : define an orthographic transform

131

This mapping is used to create an orthographic patch to remove a spherical-polar singularity or a cylindrical polar singularity
(i.e. a singular may occur at the end of a mapping defined in cylindrical coordinates when the cross-sections converge to a

point). Normally one would use the Repar anerti zat i onTr ansf or mmapping to construct the Orthographic patch.

23.1 Description

The orthographic transformation is a mapping from parameter space to parameter space. There are two forms to this mapping,
the first can be used to reparameterize a mapping with a spherical polar singularity and the second can be used for a cylindrical

mapping with a polar singularity.

23.1.1 Orthographic transform to reparameterize a spherical-polar singularity

This form of the orthographic mapping transforms into spherical polar coordinates

o0

(T17T2)H(t1,t2):(;72ﬂ)
and is defined by
1 1
51:(7"1—5)%, 522(7”2—5)817, Uz:S%-ﬁ-s%
1— o2 2
COS(b:iH_%:Q, Sin(ﬁzrgaw cost%7 sinezi%.
¢ 0

t1,t) = (=, —
(1’ 2) (7_(,727_‘_)

The upper sign (+) is used for a reparametrization covering the north pole and the lower sign (—) for the south pole.

The derivatives are returned as

% B s1 +2s,
o, (14020 =
% o S92 :|:2Sb
ors (14+020 =
. 8t2 S92 i2$a
Sln((b)a_ﬁ - (1 ¥+ 0,2)0, T
. 8t2 o S1 :|:28b
sin(¢) ory * (1+0%)0 =

(11)
(12)
(13)

(14)

so that when this mapping is composed with a mapping in spherical-polar form the sin(¢) terms will cancel nicely to remove

the removable singularity.
The inverse of the mapping (¢1,t2) — (r1,72) is defined by

¢ =m7ty, 0 =2wts, 512%0089, So = %sin@.
S 1 So 1
r = g 5, To = S_b 5
The derivatives are returned as
or1 cos(f) &
ot~ (1£cos(9)) sa
ory sin(d) =«
ot (T£cos(d)) s
1 or sin(6) 27
sin(¢) 0ty (1 £cos(¢) sq
1 Or cos(f) L2

sin(¢) Jta (1 £cos(¢) sp

24 MEMBER FUNCTIONS 132

23.1.2 Orthographic transform to reparameterize a cylindrical polar singularity

This form of the orthographic mapping transforms into cylindrical coordinates

0
(T17T2) - (tlth) = (57 7)
2w
and is defined by
1 1
s1=(r1 — i)sa7 S9 = (ro — §)sb 0% =81+ 52
11-0% 1 20
t1:i§ m+§, tan(27rt2)::|:82/$1, r= 1+0‘2
The derivatives are returned as
1ot — silisa
r Ory (1+02)0
10t
_-gn 842185
r Ory (14+0%)0o
Oto B S9 +s,
ory (14020 7
POz s Es
Org (1+02)0 =«

so that when this mapping is composed with a mapping in cylindrical coordinates form the terms will cancel nicely to remove
the removable singularity.
The inverse of the mapping (¢1,t2) — (r1,72) is defined by

(=2t1—1, r=4/1-C tan(d) = :I:s—?, Ss1 = 1:1((:050, szzillcsinﬁ.
s 1 85y 1
T = g 5, T2 = S_b 5
The derivatives are returned as
—r% _ cos(d) £2
oty (1£¢) sq
—r% _ sin(d) 2
oty (1£¢) s
10r; sin(d) —27
rot, (1£) sa
10r; cos(f) +27
roty (1£Q) s

24 Member functions

24.1 Default Constructor

OrthographicTransform(const real sa_= 1.,
const real sh_=1.,
const Pole pole_ = northPole)

Purpose: The Ort hogr aphi ¢cTr ansf or mis used by the Repar anet eri zati onTr ansf or mto remove a polar sin-
gularity.

sa_, sb_ (input) : parameters that specify the dimensions of the plane that is projected onto the sphere in the orthographic
transform.

pole (input) : reparameterize the nor t hPol e or the sout hPol e.

24 MEMBER FUNCTIONS 133

24.2 setAngularAxis
int
setAngularAxis(const int & tAxis_)

Purpose: Specify which axis (axisl or axis2) corresponds to the angular (0) direction of the mapping that will have an ortho-
graphic patch on it. The ¢ direction will be axisl if tAxis=axis2 or axis2 if tAxis=axisl.

tAxis_ (input) : axisl (0) or axis2 (1).

24.3 setPole
int
setPole(const Pole & pole_)

Purpose: Specify which pole to reparameterize.

pole (input) : reparameterize the nor t hPol e or the sout hPol e.

24.4 setSize

int

setSize(const int & sa_,
constint & sh_)

Purpose: Specify the size of the orthographic patch.

sa_, sb_ (input) : parameters that specify the dimensions of the plane that is projected onto the sphere in the orthographic
transform.

24 MEMBER FUNCTIONS 134

24.5 Class PlaneMapping

This mapping defines a plane or rhombus in three-dimensions.

24.6 Constructor

PlaneMapping(const real & x1 =0. */, const real & y1 /* =0. */, const real & z1 /* =0.,
const real & x2 =1. */, const real & y2 /* =0. */, const real & z2 /* =0.,
const real & x3 =0. */, const real & y3 /* =1. */, const real & z3 /* =0.)

Purpose: Default Constructor, define a plane (or rhomboid) by three (non-collinear) points, pl=(x1,y1,z1), p2=(x2,y2,z2),
p3=(x3,y3,z3) arranged as:

24.7 setPoints
int
setPoints(const real & x1 =0. */, const real & y1 /* =0. */, const real & z1 /* =0.,

const real & x2 =1. */, const real & y2 /* =0. */, const real & z2 /* =0.,
const real & x3 =0. */, const real & y3 /* =1. */, const real & z3 /* =0.)

Purpose: Set the corners of the plane or rhomboid. The plane (or rhomboid) is defined by three (non-collinear) points,
pl=(x1yl1,z1), p2=(x2,y2,z2), p3=(x3,y3,z3) arranged as:

25 QUADRATICMAPPING: DEFINE A QUADRATIC CURVE OR SURFACE.

25 QuadraticMapping: define a quadratic curve or surface.

Use this mapping to define a quadratic curve or surface.
A parabola (curve in 2D) is defined by

To = Coz + C12T0

Tr1 = agp + a10To + (12017%
A 3d paraboloid (surface) is defined by

To = Coz + C1270
T1 = Coy + C1yT1

T2 = ago + @100 + o171 + a20$3 + a117071 + aoﬂ%
A hyperbola (2d curve) is defined by

Ty = Coz + C1270
21 = *(ago + a10o + azzy)/?
A 3d hyperboloid (surface) is defined by

To = Coz + C1zT0

T1 = Coy + C1yT1

o . 2 X _o\1/2
Ty = F(ago + a10To + ag11 + a0rE + ar1zor1 + ager?)Y

25.1 Examples

quadratic
1.00
o™
x
0.75
0.50
0.25
o A RN BN s = I il RN R R
-100 -075 -050 -025 000 025 050 075 100

1

A 2D parabola.

135

25 QUADRATICMAPPING: DEFINE A QUADRATIC CURVE OR SURFACE. 136

quadratic

A 3D parabolic surface.

25.2 Constructor
QuadraticMapping()

Description: Define a quadrtic curve or surface (parabola or hyperbola)

25.3 setQuadraticParameters

int

chooseQuadratic(QuadraticOption option,
int rangeDimension_ =2)

Description: Specify the parameters for a quadratic function:
option (input): An option from the enum QuadraticOption: par abol a or hyper bol a.

rangeDimension_ (input): 2 or 3

25.4 setParameters

int

setParameters(real c0x,
real c1x,
real cOy,
real cly,
real a00,
real al0,
real a01,
real a20,
real all,
real a02,
real signForHyperbola_=1.)

25 QUADRATICMAPPING: DEFINE A QUADRATIC CURVE OR SURFACE.

Description: Specify the parameters for a quadratic function:
A parabola (curve in 2D) is defined by

To = Coz + Ciz *T0

1 = apo + a10%o + azoxg
A 3d paraboloid (surface) is defined by

To = Cog + C1z * 70
T1 = Coy + C1y ¥ 71

T = ago + a10o + ap121 + a20$3 + ai1xor1 + aozxf
A hyperbola (2d curve) is defined by

To = Coz + C1z * 70

x1 = +(ago + a10mo + agor?)'/?
A 3d hyperboloid (surface) is defined by

To = Cox + Ciz ¥ T0
T1 = Coy + C1y %71

o " 2) 201/2
Ty = F(ago + a10To + ag121 + a0TE + ar1zer1 + ager)Y

a00_, al0_,... (input): parameters in above formula.

137

26 REDUCTIONMAPPING: CREATE A MAPPING FROM THE FACE OR EDGE OF AN EXISTING MAPPING 138

26 ReductionMapping: create a Mapping from the face or edge of an existing
Mapping
26.1 Description

The Reduct i onMappi ng can be use to make a new Mapping from the face or edge of another Mapping, thus reducing the
domain dimension of the original mapping.

In general the new Mapping is defined by fixing one or more of the r-coordinates of the original mapping.

For example if we have a mapping from R?® — R?, x(ro,71,72), We can define a new Mapping from R? — R?3 by
the surface x,(rg,71) = x(ro,71,72,) for some fixed value ro,. We could also define the curve in 3-space by x,.(r¢) =
X(70asT0, 24) fOr some fixed values rq, and ro,.

26.2 Constructor

ReductionMapping()

Purpose: Default Constructor

26.3 Constructor

ReductionMapping(Mapping & mapToReduce,
const real & inactiveAxis1Value =0.,
const real & inactiveAxis2Value =-1.,
const real & inactiveAxis3Value =-1.)

Purpose: Create a reduction mapping.
mapToReduce (input): reduce the domain dimension of this mapping.

inactiveAxis1Value (input): if this value is between [0,1] then the r value for axis1 will be fixed to this value and axis1 will
become an in-active axis; otherwise axisl will remain active.

inactiveAxis2Value (input): fix an r value for axis2. See comments for inactiveAxis1Value.

inactiveAxis3Value (input): fix an r value for axis3. See comments for inactiveAxis1Value.

26.4 Constructor

ReductionMapping(Mapping & mapToReduce,
const int & inactiveAxis,
const real & inactiveAxisValue)

Purpose: Create a reduction mapping.
map ToReduce (input): reduce the domain dimension of this mapping.
inactiveAxis (input): This is the inactive axis.

inactiveAxisValue (input): This is the value of the inactive axis in [0,1].

26.5 set
int
set(Mapping & mapToReduce,
const real & inactiveAxis1Value =0. ,

const real & inactiveAxis2Value =-1.,
const real & inactiveAxis3Value =-1.)

Purpose: Set parameters for a reduction mapping.

mapToReduce (input): reduce the domain dimension of this mapping.

26 REDUCTIONMAPPING: CREATE A MAPPING FROM THE FACE OR EDGE OF AN EXISTING MAPPING 139

inactiveAxis1Value (input): if this value is between [0,1] then the r value for axis1 will be fixed to this value and axis1 will
become an in-active axis; otherwise axis1 will remain active.

inactiveAxis2Value (input): fix an r value for axis2. See comments for inactiveAxis1Value.

inactiveAxis3Value (input): fix an r value for axis3. See comments for inactiveAxis1Value.

26.6 set
int
set(Mapping & mapToReduce,

const int & inactiveAxis,
const real & inactiveAxisValue)

Purpose: Set parameters for a reduction mapping.
map ToReduce (input): reduce the domain dimension of this mapping.
inactiveAxis (input): This is the inactive axis.

inactiveAxisValue (input): This is the value of the inactive axis in [0,1].

26.7 setlnActiveAxes
int
setInActiveAxes(const real & inactiveAxis1Value =0.,

const real & inactiveAxis2Value =-1.,
const real & inactiveAxis3Value =-1.)

Purpose: Specify the in-active axes.

inactiveAxis1Value (input): if this value is between [0,1] then the r value for axis1 will be fixed to this value and axis1 will
become an in-active axis; otherwise axisl will remain active.

inactiveAxis2Value (input): fix an r value for axis2. See comments for inactiveAxis1Value.

inactiveAxis3Value (input): fix an r value for axis3. See comments for inactiveAxis1Value.

26.8 setlnActiveAxes
int
setInActiveAxes(const int & inactiveAxis,
const real & inactiveAxisValue)

Purpose: Set parameters for a reduction mapping.
inactiveAxis (input): This is the inactive axis.

inactiveAxisValue (input): This is the value of the inactive axis in [0,1].

27 REPARAMETERIZATIONTRANSFORM: REPARAMETERIZE AN EXISTING MAPPING (E.G. REMOVE A POLAR SINGULARIT

27 ReparameterizationTransform: reparameterize an existing mapping (e.g. re-
move a polar singularity)

27.1 Description
The Repar anmet eri zat i onTr ansf or mcan reparameterize a given Mapping in one of the following ways:
Orthographic: remove a polar singularity by using a orthographic projection to define a new patch over the singularity.

Restriction: restrict the parameter space to a sub-rectangle of the original parameter space. Use this, for example, to define a
refined patch in an adapative grid.

27.2 Reparameterizing a spherical-polar or cylindrical-polar singularity

The ort hogr aphi ¢ reparameterization can be used to remove a spherical polar singluarity or cylindrical polar singularity
by defining a new patch over the singularity.

In order for the or t hogr aphi c reparameterization to be applicable the Mapping to be reparmeterized must have the
following properties:

a polar singularity : The mapping must have a polar singularity at r; = 0 or ; = 1 and the coordinate direction r, must be
the angular (#) variable. (r3 would be the radial direction). If the mapping has such a singularity then one should indicate
this property with the call of the form

set TypeO Coordi nateSi ngul arity(side,axis,polarSingularity);
can be evaluated in spherical (or cylindrical) coordinates : this property should be set with a call

set Coor di nat eEval uati onType(spherical, TRUE);

or

set Coor di nat eEval uati onType(cylindrical, TRUE);

A Mapping that can be evaluated in spherical or cylindrical coordinates must define the nap and basi cl nver se
functions to optionally return the derivatives in a special form. For spherical coordinates the derivatives of the mapping

are computed as
Ary sin(¢) dry” Ors

<% sin(¢) Ora 87“3>.

and the derivatives of the inverse mapping as

8LBZ' ’ 8‘%1 ’ 0%

Here ¢ = 71 is the parameter (latitude) for which the spherical singularities occur at ¢ = 0, 7. See the implementation
of the Spher eMappi ng or the Revol ut i onMappi ng for two examples.

For cylindrical coordinates the derivatives of the mapping are computed as
_pdmi 10%; Ow;
p@rl ’ P 87’27 (97‘3

—_1 orq % ors
1% le ’ paiz ’ 69:1 '

and the derivatives of the inverse mapping as

Here the variable p, defined by
C = 27"() —1.
p=1/1— r%

goes to zero at the singularity. See the implementation of the ellipse in Cr ossSect i onMappi ng. Cfor an example of
cylindrical coordinates.

27 REPARAMETERIZATIONTRANSFORM: REPARAMETERIZE AN EXISTING MAPPING (E.G. REMOVE A POLAR SINGULARIT

27.3 Default Constructor

ReparameterizationTransform()

Purpose: Default Constructor The Repar anet eri zat i onTr ansf or mcan reparameterize a given Mapping in one of the
following ways:

orthographic: Remove a polar singularity by using a orthographic projection to define a new patch over the singularity.

restriction: restrict the parameter space to a sub-rectangle of the original parameter space. Use this, for example, to
define a refined patch in an adpative grid.

equidistribution: reparameterize a curve in 2D or 3D so as to equi-distribute a weighted sum of arclength and curvature.

27.4 Constructor(Mapping,ReparameterizationTypes)

ReparameterizationTransform(Mapping & map,
const ReparameterizationTypes type = defaultReparameterization)

Description: Constructor for a Reparameterization.
map (input) : mapping to reparameterize.

type (input) :

27.5 Constructor(MappingRC,ReparameterizationTypes)

ReparameterizationTransform(MappingRC & mapRC,
const ReparameterizationTypes type = defaultReparameterization)

Description: Constructor for a Reparameterization. See the comments in the constructor member function

27.6 constructor(MappingRC,ReparameterizationTypes)

void
constructor(Mapping & map, const ReparameterizationTypes type)

Description: This is a protected routine, used internally. Constructor for a Reparameterization. This constructor will check to
see if you are trying to reparameterize a Mapping that is already the same type of reparameterization of another mapping.
For example you may be making a sub-mapping (restriction) of a sub-mapping. In this case this constructor will eliminate
the multiple restriction operations and replace it by a single restriction. You should then use the scaleBounds member
function to define a new restriction. This function will scale the bounds found in map.

27.7 constructorForMultipleReparams

void
constructorForMultipleReparams(ReparameterizationTransform & rtMap)

Description: **This is a protected routine** If you want to reparameterize a mapping that is already Reparameterized then
use this constructor. It will replace multiple reparams of the same type with just one reparam

Notes:

27.8 scaleBound

int

scaleBounds(const real ra =0.,
const real rb =1.,
const real sa =0.,
const real sb =1.,
const real ta =0.,
const real th =1.)

27 REPARAMETERIZATIONTRANSFORM: REPARAMETERIZE AN EXISTING MAPPING (E.G. REMOVE A POLAR SINGULARIT

Description: Scale the current bounds for a restriction Mapping. See the documentation for the Rest ri ct i onMappi ng for
further details.

ra,rb,sa,sb,ta,tb (input):

27.9 getBounds
int
getBounds(real & ra, real & rb, real & sa, real & sb, real & ta, real & tb) const

Description: Get the bounds for a restriction mapping. Rest ri ct i onMappi ng for further details.

ra,rb,sa,sh,ta,tb (output):

27.10 setBounds

int

setBounds(const real ra =0.,
const real rb =1.,
const real sa =0.,
const real sb =1.,
const real ta =0.,
const real tb =1.)

Description: Set absolute bounds. See the documentation for the Rest ri ct i onMappi ng for further details.

ra,rb,sa,sh,ta,tb (input):

27.10.1 getBoundsForMulitpleReparameterizations
int
getBoundsForMulitpleReparameterizations(real mrBounds[6]) const

Description: Get the bounds for multiple reparameterizations. This routine will usually only be called by the Grid class.

mrBounds (output):

27.10.2 setBoundsForMulitpleReparameterizations

int
setBoundsForMulitpleReparameterizations(real mrBounds[6])

Description: Set the bounds for multiple reparameterizations. This routine will usually only be called by the Grid class.

mrBounds (input):

27.10.3 parameterize
int
setEquidistributionParameters(const real & arcLengthWeight_/* =1.*/,

const real & curvatureWeight_/* =0.*/,
const int & numberOfSmooths = 3)

Description: Set the ‘arclength’ parameterization parameters. The parameterization is chosen to redistribute the points
to resolve the arclength and/or the curvature of the curve. By default the curve is parameterized by arclength
only. To resolve regions of high curvature choose the recommended values of ar cLengt hWi ght =1. and
curvat ureWei ght =1..

To determine the parameterization we equidistribute the weight function

s(r) o(r)

w(r) = arcLengthWeight|—T + curvatureWeightl—
Sloo Cloo

27 REPARAMETERIZATIONTRANSFORM: REPARAMETERIZE AN EXISTING MAPPING (E.G. REMOVE A POLAR SINGULARIT

where s(r) is the local arclength and ¢(r) is the curvature. Note that we normalize s and ¢ by their maximum values.

o o |$TT|
c=lxgs| = PRE
i

arcLengthWeight_ (input): A weight for arclength. A negative value may give undefined results.
curvatureWeight_ (input): A weight for curvature. A negative value may give undefined results.

numberOfSmooths (input): Number of times to smooth the equidistribution weight function.

28 RESTRICTIONMAPPING: DEFINE A RESTRICTION TO A SUB-RECTANGLE OF THE UNIT CUBE 144

28 RestrictionMapping: define a restriction to a sub-rectangle of the unit cube

28.1 Description

The Restri cti onMappi ng is a simple mapping that defines a restriction to a sub-rectangle of the unit square or unit cube.
This Mapping is used by the Repar amet eri zat i onTr ansf or mwhere it can be used to define a mesh refinement patch
on an adpative grid.

The restriction is a Mapping from par anet er space r to par anet er space x defined by

x(I,azisl) = (rb — ra)r(I,axisl) + ra
z(I,axis2) = (sb — sa)r(I,azis2) + sa
x(I,axis3) = (tb — ta)r(I,axis3) + ta

28.2 Default Constructor

RestrictionMapping(const real ra_=0.,
const real rb_=1.,
const real sa_=0.,
const real sh_=1,,
const real ta_=0.,
const real th_=1,,
const int dimension =2,
Mapping *restrictedMapping =NULL)

Purpose: Default Constructor The restriction is a Mapping from par anet er space to par anet er space defined by

xz(I,axisl) = (rb — ra)r(I,azisl) + ra
x(I,axis2) = (sb — sa)r(I,axis2) + sa
x(I,azis3) = (tb — ta)r(I,azis3) + ta

ra_rb_sa_sb_ta_tb_(input): Parameters in the definition of the Rest ri ct i onMappi ng.
dimension (input): define the domain and range dimension (which are equal).

restrictedMapping (input) : optionally pass the Mapping being restricted. This Mapping is used to set spacelsPeriodic.

28.3 scaleBounds

int

scaleBounds(const real ra_=0.,
const real rb_=1.,
const real sa_=0.,
const real sh_=1.,,
const real ta_ =0.,
const real th_=1.)

Purpose: Scale the current bounds. Define a sub-rectangle of the current restriction. These parameters apply to the current
restriction as if it were the entire unit square or unit cube. For example for the ”r” variable the transformation from old
values of (ra,rb) to new values of (ra,rb) is defined by:

rba =1rb—ra
rb=ra—+ rb_rba

ra =ra-+ ra_rba

ra_rb_sa_sb_ta_tb_(input): These parameters define a sub-rectangle of the current restriction.

28 RESTRICTIONMAPPING: DEFINE A RESTRICTION TO A SUB-RECTANGLE OF THE UNIT CUBE 145

28.4 getBounds
int
getBounds(real & ra_, real & rb_, real & sa_, real & sb_, real & ta_, real & tb_) const

Description: Get the bounds for a restriction mapping. Rest ri ct i onMappi ng for further details.

ra_rb_sa_sb_ta_tb_ (output):

28.5 setBounds

int

setBounds(const real ra_=0.,
const real rb_=1.,
const real sa_=0.,
const real sh_=1.,
const real ta_=0.,
const real th_=1.)

Purpose: Set absolute bounds for the restriction.

ra_rb_sa_sb_ta_tb_(input): Parameters in the definition of the Rest ri cti onMappi ng.

28.6 setSpacelsPeriodic
int
setSpacelsPeriodic(int axis, bool trueOrFalse = true)

Description: Indicate whether the space being restricted is periodic. For example if you restrict an AnnulusMapping then you
should set periodicl=true since the Annulus is periodic along axisl

29 REVOLUTIONMAPPING: CREATE A SURFACE OR VOLUME OF REVOLUTION 146

29 RevolutionMapping: create a surface or volume of revolution

29.1 Description

The Revol ut i onMappi ng revolves a two-dimensional mapping (ie. a 2D curve or 2D region) in the plane around a given
line to create a three-dimension mapping in three-space. The Revol ut i onMappi ng can also be used to revolve a curve in
3D about a line to create a surface in 3D.

Av

lineTangent
b y
P
a
endAngle*2*Pi X0 startAngle*2*Pi
lineOrigin

Figure 16: The RevolutionMapping can be used to revolve a 2D mapping about a line through a given angle. It can also be used
to revolve a 3D curve.

The revolution mapping is defined in the following manner. (This description applies to the case when the mapping to be
revolved is a 2D region. A similar definition applies in the other cases). Let

Xo = lineOrigin(0 : 2) = a point on the line of revolution
v = lineTangent(0 : 2) = unit tangent to the line of revolution
P : The two dimensional mapping in the plane that we will rotate

We first evaluate the two-dimensional mapping and save in a three dimension vector, y,
r(0:1) — (P(r),0) = (y(0:1),0) =y
Now decompose y — xq into a component parallel and a component orthogonal to the line of revolution:

y—xg=a+b
a=(a-v)v component parallel to v

Then rotate the part orthogonal to the line:
X —xo = a+ Rb where R is the rotation matrix
To compute R we determine a vector c orthogonal to b and v,

c=vxDb

29 REVOLUTIONMAPPING: CREATE A SURFACE OR VOLUME OF REVOLUTION 147

Then
Rb = cos(#)b + sin(f)c

where
0 =r(2,1)0 + startAngle 2m, § = (endAngle — startAngle)2w

In summary the revolution mapping is defined by
x = a+ cos(f)b + sin(f)c + xq
a=((y —x0) v)v
b=y—-xp—a

c=vxDb

The derivatives of the mapping are defined as

g;t = g:l + cos(6) g: + sin(6) gz fori =0,1
da Oy

87"7; h (87’1 'V)V

ob 0dy Oa

a?"i h 37’1' B (91"7;

dc ob

or; v or;

0x

Gy, = 0% (=sin(@)b + cos()c)

29.2 Inverse of the mapping

When the mapping to be revolved is in the x-y plane, the Revol ut i onMappi ng can be inverted analytically in terms of the
inverse of the mapping that is being revolved. (When revolving a 3D curve we do not define a special inverse). Here is how we

do the inversion.
Given a value x we need to determine the corresponding value of r. To do this we can first decide how to rotate the point

x (about the line through xq with tangent v) into the x-y plane. This will determine 6 and y. Given y we can invert the
two-dimensional mapping to determine (rg,r1).
To perform the rotation back to the — y plane we decompose x — x into

x—xoza—i—f)

where a is the component parallel to v, (the same a as above),

a=((x—xp) V)V

and

b=x—-—x¢y—a.

Note that b is not the same as b. Letting

é=+vxb
where the correct sign must be chosen, then we can rotate back to the = — y plane with the transformation
y = a+ cos(—0)b + sin(—0)é (15)

Since y3 = 0 (y = (y1, Y2, y3)) it follows from the third component of this last equation that

0 = as + cos(f)bs — sin()és
Now assuming that as = 0 (which assumes that the line of rotation is in the 2 — y plane) then
by

C3

Given 6 we then know the first two components of y = (y1, 2, 0) from (15). We now determine the inverse of (y1, y2) using
the i nver seMap of the two-dimensional mapping,

r(0:1) =P (y(0:1))

tan(0) =

29 REVOLUTIONMAPPING: CREATE A SURFACE OR VOLUME OF REVOLUTION 148

29.3 Reparameterized to spherical-like coordinates

If the body of revolution created by this mapping has a spherical polar singularity at one or both ends we may wish to
create a new mapping near the pole that does not have a singularity by using an orthographic mapping (created from the
repar anet eri ze menu in ogen). The orthographic transform expects the mapping to be parameterized like a sphere with
parameters (¢, 6, 7). Thus we will want to change the order of the parameters in the above definition of the body of revolution:

x(r1,72,73) = X(r1,73,72) OF X(r1,72,73) = X(r3,r1,72)

so that the new variable x will be parameterized like a sphere.
This re-ordering is done automatically if the body of revolution is detected to have a spherical polar type singularity.

OCo~NoOORWNE

29 REVOLUTIONMAPPING: CREATE A SURFACE OR VOLUME OF REVOLUTION 149

29.4 Examples

E

Snoot hedPol ygon

exit
body of revol ution

* exit

srmocthedPolygon

Create a cylindrical body of revolutic 0'75:
from a Snoot hed Pol ygon F

0.50

vertices
7

-1. 0. E
-1. .25 —0.001
-.8 .5 r
0. .5 025
.8 .5 [
1. .25
1. 0. 1
n-di st

fixed nornmal distance

.1

n-di st

fixed normal distance

.4

corners . .
specify positions of corners A two-dimensional smoothed polygon.

0.2%

tangent of line to revolve about
1. 00
boundary conditions
00-1-110
mappi ngNane
cyl i nder
l'ines
45 21 7

A body of revolution created by revolving a two-dimensional smoothed
polygon.

29 REVOLUTIONMAPPING: CREATE A SURFACE OR VOLUME OF REVOLUTION

Crcle or ellipse
exit
body of revol ution
choose a point on the line to revol ve abou
-2. 00

~NoOo O~ WN R

150

A body of revolution for a torus is created by revolving a circle.

29.5 Constructor
RevolutionMapping()

Purpose: Default Constructor

29.6 Constructor

RevolutionMapping(Mapping & revolutionary_,
const real startAngle_=0.,
const real endAngle_=1.,

const RealArray & lineOrigin_=Overture::nullRealDistributedArray(),
const RealArray & lineTangent_ =Overture::nullRealDistributedArray()

Purpose: This constructor takes a mapping to revolve plus option parameters

revolutionary_ (input) : mapping to revolve.

startAngle_ (input) : starting "angle” (in [0,1]) for the reolution.
endAngle_ (input) : ending “angle” (in [0,1]) for the revolution.
lineOrigin_ (input) : the point of origin for the line of revolution.

lineTangent_ (input) : the tangent to the line of revolution.

29.7 setRevolutionAngle

int

setRevolutionAngle(const real startAngle_=0.,
const real endAngle_=1.)

Purpose: Define the angle through which the revolution progresses.

startAngle_ (input) : starting "angle” (in [0,1]) for the revolution.

endAngle_ (input) : ending “angle” (in [0,1]) for the revolution.

29 REVOLUTIONMAPPING: CREATE A SURFACE OR VOLUME OF REVOLUTION 151

29.8 getRevolutionAngle

int

getRevolutionAngle(real & startAngle_,
real & endAngle_)

Purpose: Get the bounding angles in the revolution progresses.
startAngle_ (input) : starting "angle” for the revolution.

endAngle_ (input) : ending "angle” for the revolution.

29.9 setParameterAxes

int

setParameterAxes(const int & revAxisl_, const int & revAxis2_, const int & revAxis3_)

Purpose: Define the parameter axes the mapping. The 2D mapping will be evaluated with (r (I, revAxisl), -
r(l,revAxi s2)) whiler (I, revAxi s3) will correspond to the angle of revolution 6. The choice of these variables
is normally only important if the body of revolution has a spherical polar singularity at one or both ends and the user

wants to remove the singularity using the orthographic projection.(reparameterization option). The orthographic project
expects the mapping to parameterized like a sphere with the parameters in the order (¢, 6, r).

revAxisl The axis corresponding to ¢ in a spherical coordinate systems or the axial variable s in cylindrical coordinates.
revAxi s1 will normally be 0 (or 1) and correspond to the axial like variable in the 2D mapping that is being
revolved.

revAxis2 The axis corresponding to r in a spherical coordinate system. Normally revAxis2=2 so the axial variable
appears last.

revAxis3 The axis corresponding to 6 in a spherical coordinate system. Normally revAxis3=1.

revAxisl_revAxis2_,revAxis3_ (input) : A permutation of (0,1,2).

29.10 setRevolutionary
int
setRevolutionary(Mapping & revolutionary_)

Purpose: Define the mapping that will be revolved.

revolutionary_input) : mapping to revolve.

29.11 setLineOfRevolution

int

setLineOfRevolution(const RealArray & lineOrigin_,
const RealArray & lineTangent_)

Purpose: Define the point of origin and the tangent of the line of revolution. *For now this point and line must lie in the x-y
plane (lineOrigin_(2)==0, lineTangent_(2)==0)

lineOrigin_ (input) : the point of origin for the line of revolution. For now we require lineOrigin_(2)==0.

lineTangent_ (input) : the tangent to the line of revolution with lineTangent_(2)==0

30 ROCKETMAPPING: CREATE ROCKET GEOMETRY CURVES 152

30 RocketMapping: create rocket geometry curves

The Rocket Mappi ng defines a variety of curves related to rockets. The curves defined in this class were originally written by
Nathan Crane (as three separate Mapping’s), and then subsequently reorganized into a single class by WDH. There are currently
3 cross-section shapes supported, the slot, star and circular shapes. The slot and star shapes are illustrated in the next figure.

Outer Radius : Inner Radiu Outer Radius | Inner Radius

— o Slot Width
: - | \-Outer Fillet
| |
num_vertex =4 num_vertex =4
The slot shape. The star cross-section.

30.1 Slot

Overview : The slot option creates by default a sloted grain shaped spline in the z=0 plane. The mapping should be usable
in every way as a standard spline. The slot spline mapping will always be periodic, the number and location of the spline
knot points are generated automatically according to the slotted grain input parameters. A graphical description of the various
parameters can found in the above figure.

Options:

set range dimension : Toggle between a 2D and 3D spline (spline will always lie in a plane, but in 3D that plane can be rotated
or shifted to a arbitrary positon.)

shape preserving (toggle) : toggle between shape preserving and tension spline (see standard spline mapping documentation
for more info)

set bounding radii : Set the inner and outer bounding radii for the slot grain. slots will just touch a circle of radius outer
bounding radius. The slots will intersect a circle of radius inner bounding radius.

set slot width : Set the width of each slot. The slots wil be rounded on the ends by a circle of diameter slot width.

set z value : by default the spline lies in the z=0 plane. Changing the z value moves the spline to some other constant z value
plane. This command is a shortcut for the shift operator. This command cannot be used with a 2D sloted grain mapping.

set element size : Set the size of the elements along the spline. The total length of the spline is computed, and the number of
lines of grid points is taken as total_length/el_size. the number of spline knot points is taken as the same as the number of
lines. Element size and number of lines are mutally exclusive commands.

set number of vertex : Set the number of vertices (number of slots) of the mapping valid values are 2 vertices and up.

30 ROCKETMAPPING: CREATE ROCKET GEOMETRY CURVES 153

30.2 Star

Overview: The star option creates by default a star shaped spline in the z=0 plane. The mapping should be usable in every way
as a standard spline. The star spline mapping will always be periodic, the the number and location of the spline knot points are
generated automatically according to the star input parameters. A graphical description of the various parameters can found in
the above figure.

Options:

set range dimension : Toggle between a 2D and 3D spline (spline will always lie in a plane, but in 3D that plane can be rotated
or shifted to a arbitrary positon.)

shape preserving (toggle) : toggle between shape preserving and tension spline (see standard spline mapping documentation
for more info)

set bounding radii : set the inner and outer bounding radii for the star. The inside points the star will be circimscribed between
the inner and outer radi. The outer points of the star will just touch a circle of radius outer bounding radius. The inner
points of the star will just touch a circle of radius inner bounding radius.

set fillet radii : set the inner and outer fillet radii for the star. The fillet radi determine the sharpness of the points of the star.
Large fillet radii create a more blun star, while smaller fillet radi create a sharper star. Note that when createing in 3D
volume, a sharper pointed star will require a thiner boundry mesh, and thus more elements to mesh than a blunted star.

set z value : by default the star lies in the z=0 plane. Changing the z value moves the star to some other constant z value plane.
This command is a shortcut for the shift operator. This command cannot be used with a 2D star.

set element size : Set the size of the elements along the star. The total length of the star spline is computed, and the number of
lines of grid points is taken as total_length/el_size. the number of spline knot points is taken as the same as the number of
lines. Element size and number of lines are mutally exclusive commands.

set number of vertex : Set the number of vertices (number of arms) of the star valid values are 2 vertices and up. For instance
a space shuttle fuel grain is described by a 11 vertex star.

set number of points : explicitly sets the number of knot points for the spline. This command overrides the set element size
command.

30.3 circle

Overview : The CircSplineMapping creates by default a circular spline in the z=0 plane. The mapping should be usable in

every way as a standard spline. The circular spline mapping will always be periodic, the the number and location of the spline

knot points are generated automatically according to the circle parameters. The circualr spline mapping is need when creating

rocket cross sections to correctly parameterize the star, anular, and sloted grain portions in a compatible way.

30.4 Member functions

30.4.1 Constructor

RocketMapping(const int & rangeDimension_ =2)

Purpose: Define various cross-sections related to rocket geometries

rangeDimension_: 2, 3

Author: Nathan Crane, cleaned up by Bill Henshaw.

30.4.2 computePoints
int
computePoints()

Purpose: Compute the spline points.

30 ROCKETMAPPING: CREATE ROCKET GEOMETRY CURVES

30.4.3 computeSlotPoints
int
computeSlotPoints()

Purpose: Compute the spline points for a slotted cross-section.
30.4.4 computePoints

int
computeStarPoints()

Purpose: Supply spline points for a star cross-section.
30.4.5 computeCirclePoints

int
computeCirclePoints()

Purpose: Supply spline points for a 2D Circ.
30.4.6 update

int
update(Mappinglnformation & maplnfo)

Purpose: Interactively create and/or change the spline mapping.

maplnfo (input): Holds a graphics interface to use.

154

31 SMOOTHEDPOLYGON 155

31 SmoothedPolygon

This mapping can be used to create a grid whose one edge is a polgyon with smoothed corners. The grid is created by extending
normals from the smoothed polygon.
The smoothed polygon is defined by a sequence of vertices

XU(Z.) = (mv(i)vyv(i»)’ i=0,1,...,ny, =1

The curve is parameterized by a pseudo-arclength s, 0 < s < 1 with the value of s at vertex ¢ defined by the relative distance
along the (un-smoothed) polygon:

> lxu(G+1) = xu(5)]
2?;62 [0 (F + 1) = xu ()]
The smoothed polygon is defined using the interval functions V;(s) of the StretchMapping class. The interval functions can

be used to smoothly transition from one slope to a second slope. For example, the x component of the smoothed polygon is
defined as

s(i) =

C1+C()

2(s) = [3 (Wis) - Vi (0))
3=0

Recall that the interval function V; is dependent on the three parameters d;, e; and f;. The parameter d; for V; is given by

v' 1) — v’ .
g, = DU Zeld) 5oy

s(j +1) —s(j)

while
fi=s(j)

The value of ¢; is specified by the user (default = 40) and determines the sharpness of the curve at the vertex.

A grid is defined from this smooth polygon by extending normals. The length of the normal can be constant or can be made
to vary. If r; parameterizes the curve in the tangential direction and r5 in the normal direction then the parameterization of the
grid is given by

x(r1,r) = x(r1) + roN(r1)n(ry)

The function N (ry) is itself defined in terms of stretching functions.

The user has the option to stretch the grid lines in the tangential direction in order to concentrate grid lines near the vertices.
The user may also stretch the grid lines in the normal direction. Of course the grid lines may also be stretched by composing
this mapping with a StretchMapping.

Note: Unfortunately the smoothed polygon only matches the corners exponentially close with respect to the shar pness
parameter. Moreover the higher numbered vertices will have larger errors (cf. the formula above). If you choose small values
for the sharpness then the SmoothedPolygon will not match the vertices very well, nor will it be symmetric.

31 SMOOTHEDPOLYGON 156

moothedPolygoninclude.tex

31.1 update(Mappinginformation &)
The SmoothPolygon Mapping is defined interactively through a graphics interface:

GL_G aphi cslnterface graphicslnterface; /] create a GL_G aphicslinterface object
Mappi ngl nf or mati on mappi ngl nf o;
mappi ngl nf o. graphXl nt er f ace=&gr aphi csl nt erf ace;

Snoot hPol ygon pol y;
poly.interactiveConstructor(mappinglnfo); // interactively create the snoothed pol ygon

The user must specify the vertices of the polygon. The user may then optionally change various parameters from their
default values.

o sharpness : Specify how sharp the corners are (exponent). Choose the value for e; in V;. Note that if you choose
small values for the sharpness then the SmoothedPolygon will not match the vertices very well, nor will it necessarily be
symmetric.

o t-stretch : Specify stretching in tangent-direction. Specify the values for a; and b; for the exponential layer stretching at
corner j

e n-stretch : Specify stretching in normal-direction. Specify the values for a;, b; and ¢; for the exponential layer function
for stretching in the normal direction and specify the number of layer functions. By default there is one layer function
and the grid lines are concentrated near the smoothed polygon with values ag = 1., by = 4. and ¢y = 0.

e corners : Fix the grid corners to specific positions. Use this option to fix the positions of the four corners of the grid.
The corners of the grid that lie at a normal distance from the smoothed polygon may not be exactly where you want them
because the normal may be slightly different from the line which is perpendicular to the straight line which joins the
vertices. This option applies a bi-linear transformation to the entire grid in order to deform the corners to the specified
positions.

e n-dist : Specify normal distance at vertex(+-epsilon) Choose the normal distance for the grid to extend from the polygon.
Optionally the normal distance can be made to vary; a separate normal distance can be given at the position just before
vertex ¢ and just after vertex i.

e curve or area (toggle) : Change the mapping from defining an area to define a curve (or vice versa). In other words
toggle the domain dimension between 1 and 2.

e isPeriodic: Specify periodicity array. Indicate whether the grid periodic in the tangential direction. Set this value to 2 if
the grid is closed and periodic or to 1 if the grid is not closed but the derivative of the curve is periodic.

e help : Print this list

e exit : Finished with parameters, construct grid

31.2 Examples

Here are some sample command files that create some SmoothedPolygon mappings. These command files can be read, for
example, by the overlapping grid generator ogen from within the cr eat e nmappi ngs menu.

OCo~NoUR~wWNE

31 SMOOTHEDPOLYGON

*

* Snoot hedPol ygon: exanple 1
Snoot hedPol ygon
vertices
* nunber of vertices:
3
* vertices:
.25 0.
.25 .25
0. .25
l'ines
51 11

*
* Snoot hedPol ygon: exanple 2
* Note: If first vertex is the samas thu
* then the mapping is assuned to be peri
*
*
Snoot hedPol ygon
vertices
* nunber of vertices:
5
* vertices:
.4 .6
.6 .6
.6 .4
.4 .4
.4 .6
* specify normal distance
n-di st
fixed normal distance
. 125
i nes
81 11

0275

0206

0137

0069

0732

0815

0507

0394

Qeod

0.06% 0138 0205

SmoothedPolygon example 1

0275

Q381 0493 Q8%

SmoothedPolygon example 2

H—tods

157

©o~NoO U~ wWNE

31 SMOOTHEDPOLYGON

*

* Snoot hedPol ygon: exanple 3
*
Snoot hedPol ygon
vertices
* nunber of vertices:
4
* vertices:
.3 .0
.3 .25
.7 .25
.7 0.
* specify normal distance
n-di st
vari abl e normal distance
.05 .075 40.
.075 .1 40.
.125 . 125 40.
I'i nes

81 11

Y—Axis
Q175 0262 0349

ansz

—0Cod

NN

0500

SmoothedPolygon example 3

158

32 SPHEREMAPPING 159

32 SphereMapping
This mapping defines a spherical shell or spherical surface in three-dimensions,

¢ = m(go+711(d1— o))

0 = 2mw(fp+ r2(61 — o))
R(rs) = (Ro+r3(R1— Ro))
x(ri,ra,rs) = (Reos(6) sin(0) + o, Rsin(6) sin(6) + o, Reos(s) + o)

This mapping can be inverted analytically with the inverse defined by

ri= /(2 = 0)2 + (y — y0)? + (z — 20)?
r1 = [cos ™ (2 — 20) /1) — mo]/(m(d1 — o))
r2 = [atan2(yo — y, w0 — @) + 7 — 2mo]/(27(01 — o))
rs = (’I“ — Ro)/(Rl — Ro)
This mapping can have a spherical polar singularity at one or both ends. Either singularity can be removed by creating an

orthographic patch over the pole using the Repar anet er i zat i on transform. In order to do this we must be able to evaluate
the derivatives of the Spher eMappi ng and its inverse in spherical coordinates. This means we compute the derivatives of the

mapping as
Oxi 1 Omi O
Ory sin(¢) dry” Ors

57"1 . 87‘2 87"3
(a—xi,sln((b)a—xi7 8_931> .

and the derivatives of the inverse mapping as

32.1 Examples

l *
2 * Make a sphere 0.00
3 *
4 Sphere .
5 mappi ngName i
6 sphere
7 exit 050
8

0.75 \

Y
I B~V ¥
Mo 075 ~050 70,2&%025
Sy B

A spherical shell built with the Spher eMappi ng.

~N~No gk~ wNE

32 SPHEREMAPPING

Sphere
bounds on phi (latitude)
.2 .8
bounds on theta (I ongitude) \ m ‘[{E
0. .8
exit

3

A partial spherical shell built with the Spher eMappi ng.

32.2 Constructor

SphereMapping(const real & innerRadius_ .5,
const real & outerRadius_1.,
const real & x0_.0,
const real & y0_.0,
const real & z0_.0,
const real & startTheta_ .0,
const real & endTheta_ 1.,
const real & startPhi_ .0,
const real & endPhi_1.)

Description: Define a spherical shell or spherical surface.
innerRadius_,outerRadius_ (input): bounds on the radius.

x0_,y0_,z0_ (input) : center.

startTheta_endTheta_ (input) : bounds on normalized 0, in the range [0, 1].

startPhi_endPhi_ (input): bounds on the normalized ¢, in the range [0, 1].

32.3 setOrigin
int
setOrigin(const real & x0_=.0,

const real & y0_=.0,
const real & z0_=.0)

Description: Specify parameters for the sphere.

x0_y0_,z0_ (input) : center.

R

A\\‘-%."

S
N A ! S

,
F

[T
RN

vawa

T
T

l‘*\\II ‘
L] L
0h AN

il
| ——

—
LS

=

o \\\

!

T

\

Y
y

\
s

N
| ‘l“

)

160

32 SPHEREMAPPING 161

32.4 setPhi

int

setPhi(const real & startPhi_=.0,
const real & endPhi_=1.)

Description: Specify parameters for the sphere.

startPhi_endPhi_ (input): bounds on the normalized ¢, in the range [0, 1].

32,5 setRadii

int

setRadii(const real & innerRadius_ =.5,
const real & outerRadius_=1.)

Description: Specify parameters for the sphere.

innerRadius_,outerRadius_ (input): bounds on the radius.

32.6 setTheta

int

setTheta(const real & startTheta_=.0,
const real & endTheta_=1.)

Description: Specify parameters for the sphere.

startTheta_endTheta_ (input) : bounds on normalized 6, in the range [0, 1].

33 SPLINEMAPPING: CREATE A SPLINE CURVE 162

33 SplineMapping: create a spline curve

Define a cubic spline curve in 1, 2, or 3 space dimensions. The spline curve is chosen to pass through a set of user defined
points. Options include

tension : create a spline under tension to remove wiggles, specify a constant tension.

shape preservation : automatic determination of tension factors that vary along the spline so as to create a shape preserving
(“monotone™) spline.

end conditions : A variety of end conditions for the spline are available:

periodic : The spline can be periodic (choose the periodicity option ‘function periodic’).

derivative periodic : The derivative of the spline can be periodic (choose the periodicity option “derivative periodic’).
monontone parabolic fit : default BC for the shape preserving spline.

first derivative : user specified first derivatives.

second derivative : user specified second derivatives.

parameterize : by arclength or by weighting the arclength and curvature in order to concentrate grid points near regions with
large curvature.

A 2D or 3D spline is parameterized by arclength. A 1D spline is parameterized by the index value of the point. For a spline
which is periodic in space, the Mapping will automatically add an extra point if the first point is not equal to the last point.

The SplineMapping uses “TSPACK: Tension Spline Curve Fitting Package” by Robert J. Renka; available from Netlib. See
the TSPACK documentation and the reference

RENKA, R.J. Interpolatory tension splines with automatic selection of tension factors. SIAM J. Sci. Stat. Comput. 8, (1987),
pp. 393-415.

33.1 Member functions
33.1.1 Constructor

SplineMapping(const int & rangeDimension_=2)

Purpose: Default Constructor: create a spline curve with the given range dimension. Use this Mapping to create a cubic
spline curve in two dimensions. This spline is defined by a set of points (knots), =(:),y(¢). The spline is normally
parameterized by arclength. The pline can also be parameterized by a weighting of arclength and curvature so that more
points are placed in regions with high curvature. For a spline which is periodic in space, the Mapping will automatically
add an extra point if the first point is not equal to the last point.

rangeDimension_: 1,2, 3
The SplineMapping uses ‘TSPACK: Tension Spline Curve Fitting Package’ by Robert J. Renka; available from Netlib.
See the TSPACK documentation and the reference

RENKA, R.J. Interpolatory tension splines with automatic selection of tension factors. SIAM J. Sci. Stat. Comput. 8,
(1987), pp. 393-415.

33.2 shift
int
shift(const real & shiftx =0.,

const real & shifty =0.,
const real & shiftz /* =0.*/)

Purpose: Shift the SPLINE in space.

33 SPLINEMAPPING: CREATE A SPLINE CURVE 163

33.3 scale
int
scale(const real & scalex =0.,

const real & scaley =0.,
const real & scalez /* =0.*/)

Purpose: Scale the SPLINE in space.

33.4 rotate
int
rotate(const int & axis, const real & theta)

Purpose: Perform a rotation about a given axis. This rotation is applied after any existing transformations. Use the reset
function first if you want to remove any existing transformations.

axis (input) : axis to rotate about (0,1,2)

theta (input) : angle in radians to rotate by.

33.4.1 setParameterizationType
int
setParameterizationType(const ParameterizationType & type)

Description: Specify the parameterization for the Spline. With i ndex parameterization the knots on the spline are parameter-
ized as being equally spaced. With ar cl engt h parameterization the knots are parameterized by arclength or a weighted
combination of arclength and curvature. With user Def i ned parameterization the user must supply the parameteriza-
tion through the set Par anet eri zat i on function.

type (input) : One of i ndex or ar cLengt h or user Def i ned.

33.4.2 getParameterization

const realArray &
getParameterization() const

Description: Return the current parameterization.

33.4.3 getNumberOfKnots
int
getNumberOfKnots() const

Purpose: Return the number of knots on the spline.

33.4.4 setParameterization
int
setParameterization(const realArray & s_)

Description: Supply a user defined parameterization. This routine will set the parameterization type to be user Def i ned.

s_(input) : An increasing sequence of values that are to be used to parameterize the spline points. These values must cover the
interval [0,1] which will be the interval defining the mapping. You could add values outside [0,1] to define the behaviour
of the spline at ghost points”. The number of points in the array must be equal to the number of points supplied when
the set Poi nt s function is called.

33 SPLINEMAPPING: CREATE A SPLINE CURVE 164

33.4.5 parameterize

int

parameterize(const real & arcLengthWeight_ /* =1.*/,
const real & curvatureWeight_/* =0.*/)

Description: Set the ‘arclength’ parameterization parameters. The parameterization is chosen to redistribute the points
to resolve the arclength and/or the curvature of the curve. By default the spline is parameterized by arclength
only. To resolve regions of high curvature choose the recommended values of ar cLengt hWi ght =1. and
curvat ur eWi ght _=. 5.

To determine the parameterization we equidistribute the weight function

s(r) e(r)

w(r)=1.+ arcLengthWeight|—r + curvatureWeightr
Sloo Clo

where s(r) is the local arclength and ¢(r) is the curvature. Note that we normalize s and ¢ by their maximum values.
arcLengthWeight_ (input): A weight for arclength. A negative value may give undefined results.

curvatureWeight_ (input): A weight for curvature. A negative value may give undefined results.

33.4.6 setEndConditions

int

setEndConditions(const EndCondition & condition,

const RealArray & endValues =Overture::nullRealDistributedArray())
Description: Specify end conditions for the spline

condition (input) : Specify an end condition.

monontone parabolic fit : default BC for the shape preserving spline.
first derivative : user specified first derivatives.
second derivative : user specified second derivatives.

endValues (input) : if condition==firstDerivative (or condition==secondDerivative) then
endValues(0:1,0:r-1) should hold the values for the first (or second) derivatives of the spline at the start and end.
Here r=rangeDimension.

33.4.7 setPoints

int

setPoints(const realArray & x)

Purpose: Supply spline points for a 1D curve.

x (input) : array of spline knots. The spline is parameterized by a NORMALIZED index, i/(number of points -1), i=0,1,...

33.4.8 setPoints

int

setPoints(const realArray & x, const realArray &y)

Purpose: Supply spline points for a 2D curve. Use the points (x(i),y(i)) i=x.getBase(0),..,x.getBound(0)

X,y (input) : array of spline knots.

33.4.9 setPoints

int

setPoints(const realArray & x, const realArray &y, const realArray & z)

Purpose: Supply spline points for a 3D curve. Use the points (x(i),y(i),z(i)) i=x.getBase(0),..,x.getBound(0)

X,y,z (input) : array of spline knots.

33 SPLINEMAPPING: CREATE A SPLINE CURVE 165

33.4.10 setShapePreserving
int
setShapePreserving(const bool trueOrFalse = TRUE)

Description: Create a shape preserving (monotone) spline or not

trueOrFalse (input) : if TRUE, create a spline that preserves the shape. For a one dimensional curve the shape preserving
spline will attempt to remain montone where the knots ar montone. See the comments with TSPACK for further details.

33.4.11 setTension
int
setTension(const real & tensionFactor)

Description: Specify a constant tension factor. Specifying this value will turn off the shape preseeving feature.

tensionFactor (input): A value from 0. to 85. A value of 0. corresponds to no tension.

33.4.12 setDomainlnterval

int

setDomainlnterval(const real & rStart_=0.,
const real & rEnd_=1.)

Description: Restrict the domain of the spline. By default the spline is parameterized on the interval [0,1]. You may choose
a sub-section of the spline by choosing a new interval [rStart,rEnd]. For periodic splines the interval may lie in [-1,2] so
the sub-section can cross the branch cut. You may even choose rEndijrStart to reverse the order of the parameterization.

rStart_,rEnd_ (input) : define the new interval.

33.4.13 getDomainlinterval
int
getDomainlinterval(real & rStart_, real & rEnd_) const

Description: Get the current domain interval.

rStart_rEnd_ (output) : the current domain interval.

33.4.14 setlsPeriodic

void
setlsPeriodic(const int axis, const periodicType isPeriodic0)

Description:
axis (input): axis = (0,1,2) (or axis = (axisl,axis2,axis3)) with axis < domainDimension.

Notes: This routine has some side effects. It will change the boundaryConditions to be consistent with the periodicity (if
necessary).

33.4.15 useOldSpline
int
useOldSpline(const bool & trueOrFalse =TRUE)

Description: Use the old spline routines from FMM, Forsythe Malcolm and Moler. This is for backward compatability.

trueOrFalse (input) : If TRUE Use the old spline from FMM, otherwise use the tension splines.

©o~NoOo U~ wWNE

33 SPLINEMAPPING: CREATE A SPLINE CURVE 166

33.4.16 map

void
map(const realArray & r, realArray & X, realArray & xr, MappingParameters & params)

Purpose: Evaluate the spline and/or derivatives.
33.4.17 update

int
update(Mappinglnformation & maplnfo)

Purpose: Interactively create and/or change the spline mapping.

maplnfo (input): Holds a graphics interface to use.

33.5 Examples

my—favourite—spline

2.50

%2

. 2.00
* Make a 2D spline curve
*
spline
enter spline points 1.50
* first enter the nunber of points [
5
* here are the points (x,vy) L
0. 0. 1.00
1. 0. L
1.5 .5
1. 2.
.5 2.5 r
mappi ngNane 050

ny-favourite-spline

—0.00

000 025 050 075 100 125 150
w1

A spline curve in 2D. No Tension.

33 SPLINEMAPPING: CREATE A SPLINE CURVE

my—favourite—spline

250 \
’ \
200 \
150 - \
\
\
1.00 - \
0.50 //
y
4
025 050 075 1.00 125 150
x1
Spline curve with shape preserving option.
splineMapping
0176 —
——_
N\
/
- A
//
—0.076 ‘
0.000 0.400
x1

Spline curve with default arclength parameterization.

167
my—favourite—spline
250 \
2000 \\
[\
, \
150 \
[\
\
\
1.00 - \
\
: \
i |
050 /
000 et Lo L []
000 025 050 075 100 125 150
x1
Spline curve with tension=20.
splineMapping
0.176 —
— - \\
/
e
B _—
~0.076 |
0.000 0.400
«1

Spline curve with cur vat ur eWei ght =1 so that more

points are put where the curvature is large.

34 SQUAREMAPPING (RECTANGLES TOO) 168

34 SquareMapping (rectangles too)
This mapping defines a square or rectangle in two-dimensions

x(r1,r2) = (o +11(Tp — Za)s Ya + 72(Yp — Ya))

34.1 Constructor
SquareMapping(const real xa_, const real xb_, const real ya_, const real yb_)
Purpose: Build a mapping for a square with given bounds.

xa_, xb_, ya_, yb_(input) : The square is [xa_xb_]x[ya_,yb_].

34.2 getVertices

real
getVertices(real & xa_, real & xb_, real & ya_, real & yb_) const

Description: return the vertices of the square.
xa_, Xb_, ya_, yb_ (output) : The square is [xa_xb_]x[ya_yb_].

Return value: is the z-level

34.3 setVertices

void

setVertices(const real xa_=0.,
const real xb_=1,,
const real ya_=0.,
const real yb_=1,,
const real z_=0.)

Purpose: Build a mapping for a square with given corners.
xa_, xb_, ya_, yb_ (input) : The square is [xa_xb_]x[ya_yb_].

z_: z level if the rangeDimension is 3.

35 STRETCHMAPPING: CREATE 1D STRETCHING FUNCTIONS 169

35 StretchMapping: create 1D stretching functions

The StretchMapping class, derived from the Mapping Class can be used to define one-dimensional “stretching” functions.
These functions are often used to stretch grid lines on existing Mappings. These functions can also be used as a blending
function for the TFI Mappi ng.

There are three types of stretching functions:

35.1 Inverse hyperbolic tangent stretching function

This stretching function is a one-dimensional map from r into = defined (in an inverse fashion) by
r=R(z) = [m + Z(UZ(:U) - U;(0)) + Z(Vj(x) - V](O))} x scale + origin
i=1 Jj=1

where U;(x) is a “layer” function
a;

Ui(z) = 5 tanh b; (x — ¢;)

and V;(z) is an “interval” function

Vj(a;):dj_llog(coshe;(z — f;)) 1

coshej(z — fiy1) E

The stretching mapping is often used to stretch grid points in parameter space. The functions U; are used to concentrate
grid points in at a point while the functions V; are used to transition from one grid spacing to another. When the mapping is
invertible a spline can be fitted to the inverse to be used as an initial guess for Netwon. Usually only 1-3 Netwon iterations are
needed.

Here the terms scale and origin are normalization factors determined so that R(0) = 0 and R(1) = 1. The remaining
parameters are input by the user and have the following constraints:

by > 0, j=1,.,n,,
0<c; < 1, j=1,. 0,
e; > 0, 7=1,..,n,,
<1, fn, =2 0, <f;<1, j=2,.,n,—1, and
fi<fe<fs < .. <[fn,.

The function U;(x) is a hyperbolic tangent that is centered at © = ¢; and asymptotes to —a; /2 or a;/2 (see Figure 18). As b;
tends to infinity, the function U tends toward a step function.

The function V() (which is the integral of the difference between two layer functions) is a smoothed-out ramp function
with transitions at f; and f;4, (see Figure 18). The slope of the ramp is d;_,. Thus d; indicates the relative slope of the ramp
compared to the linear term “z,” which appears in R(x). That is, if d; = 2, then the slope of R(x) between f; and f;41 will
be approximately twice the slope of the region where the linear term is dominant. A sloped region can be made to extend past
x=0o0rz =1(sothatz = 0 or z = 1is in the middle of the sloped region) by choosing f; < 0or f, +1 > 1. A reasonable
value might be f; = —.5or f,,, 41 = 1.5. Note that when a grid is periodic in the r- direction, the functions U;(z) and V;(z)
are replaced by functions U} (z) and V' (z), respectively, which are given by

+o0 too
UP(x) = > Uilt+k), Vi)=Y Vi(t+k).

k=—o00 k=—o0

These functions are not really periodic, but their derivatives with respect to z are periodic with period 1.

The following remarks may prove useful in making choices for the parameters a,, ..., f;. Below, the variable r typically
refers to a uniform grid, while x refers to a grid that has been stretched so that points are clustered in certain locations on the
x axis. The clustering of points can be done in two ways. Using the U;(x) functions (tanh’s), the point spacing can be made
to decrease exponentially to a minimum spacing at ¢;. The value of b; determines how small the spacing can get. Roughly
speaking, a value of b; = 10.0 means the spacing will be about 10 times smaller at the center of the layer than in the unstretched
parts of the grid. The relative number of points in this stretched region is proportional to a;. The linear term = appearing in
the definition of R(z) has a weight of one (1), so if there is only one term U;(x), the relative number of points in the layer is

35 STRETCHMAPPING: CREATE 1D STRETCHING FUNCTIONS 170

U; (1)
a(i)/2

—a(i)/2

Figure 17: The ‘layer’ function U (t) for concentrating grid lines at a point. The grid spacing is smaller where the slope is
larger.

£ fi41 t

Figure 18: The ‘ramp’ function V' (¢) for changing from one grid spacing to another. The grid spacing is smaller where the
slope is larger.

35 STRETCHMAPPING: CREATE 1D STRETCHING FUNCTIONS 171

essentially a1 /(1 + a1). Thus, if n, = 1, (n, = 0), and a; = 1, then half the points will be in the stretched layer. For two
layers, the relative number of points in layer i (i = 1 ori = 2)is a;/(1 + a1 + az). The functions V;(z) allow you to have
intervals where the grid point spacing is relatively smaller or larger than the grid spacing in the region where the linear term x
is dominant. In each interval, the grid spacing is nearly constant, except near the transition points f; and f; ;. The parameter
d; denotes the relative grid spacing in each interval. For example, to make the grid spacing twice as fine for t between 0.25
and 0.5, you would specify f; = 0.25, fo = 0.5, and d; = 2. As another example, to make the spacing 5 times smaller for «
between 0 and 0.5, you could say f; = —0.5, fo = 0.5, and d; = 5. Assigning the first transition point a value less than zero,
f1 = —0.5, means that = 0 will be in the middle of the interval where the spacing will be 5 times smaller. (If instead f; = 0,
then near ¢ = 0 the spacing would be in transition to the default relative grid spacing of 1). The parameters e; denote how rapid
the transition is from one spacing to another. A reasonable value for e; might be 10.0 or 20.0.

35.2 Hyperbolic tangent stretching function

This function is defined as
x(r) = {ao + a,r + a1 tanh(by (r — ¢1)) + origin} scale

If the function is normalized (optional) then origin and scale are chosen to that 2:(0) = 0 and (1) = 1. Note that a; will
normally be negative in order to concentrate lines near » = ¢;. To be invertible one should choose a,- > —a1b; (a sufficient but
not necessary condition).

35.3 Exponential stretching function

This function is defined as
z(r) = {ag + a,r + a1 exp(by(r — ¢1)) + origin} scale

If the function is normalized (optional) then origin and scale are chosen to that x(0) = 0 and z(1) = 1.

35.4 Exponential blending function

This function is defined as

1 3<s<1

-1
w0 =1 [rren (-fa2imty)| i<o<d
0 0<s<i

This function is used by the Fi | | et Mappi ng in order to make a smooth curve in the region where two curves intersect.

35.5 Member function descriptions

35.5.1 Constructor

StretchMapping(const StretchingType & stretchingType_)
Purpose: Construct a function with the given stretching type, one of

inverseHyperbolicTangent : the most commonly used stretching function defined in an inverse way as a combination
of hyperbolic tangents and logarithms of hyperbolic cosines.

hyperbolicTangent : hyperbolic tangent stretching.
exponential : exponential stretching.
exponentialBlend : a C'* blending function that is exactly 0 for r < i and exactly 1 for r > %.

stretchingType_ (input):

35.5.2 Constructor

StretchMapping(const int numberOfLayers_,
const int numberOfintervals_)

Purpose: Construct ani nver seHyper bol i cTangent stretching function.
numberOfLayers_ (input): number of layers.

numberOfintervals_ (input): number of intervals.

35 STRETCHMAPPING: CREATE 1D STRETCHING FUNCTIONS 172

35.5.3 setStretchingType
int
setStretchingType(const StretchingType & stretchingType_)

Description: Set the stretching type, one of

inverseHyperbolicTangent : the most commonly used stretching function defined in an inverse way as a combination
of hyperbolic tangents and logarithms of hyperbolic cosines.

hyperbolicTangent : hyperbolic tangent stretching.
exponential : exponential stretching.
exponentialBlend : a C'*° blending function that is exactly 0 for r < i and exactly 1 for r > %.

stretchingType_ (input):

35.5.4 setNumberOfLayers

int

setNumberOfLayers(const int numberOfLayers_)

Description: Set the number of layer (tanh) functions in the i nver seHyper bol i cTangent stretching function.

numberOfLayers_ (input):

Return value: 0 on success, 1 if the stretching type has not been set to i nver seHyper bol i cTangent in which case no
changes are made.

35.5.5 setNumberOlntervals

int

setNumberOfIntervals(const int numberOfintervals_)

Description: Set the number of interval (log(cosh)) functions in the i nver seHyper bol i cTangent stretching function.

numberOfintervals_ (input):

Return value: 0 on success, 1 if the stretching type has not been set to i nver seHyper bol i cTangent in which case no
changes are made.

35.5.6 setNumberOfSplinePoints

int

setNumberOfSplinePoints(const int numberOfSplinePoints0)

Description: Set the number of interval (log(cosh)) functions in the i nver seHyper bol i cTangent stretching function.

numberOfintervals_ (input):

Return value: 0 on success, 1 if the stretching type has not been set to i nver seHyper bol i cTangent in which case no
changes are made.

35.5.7 setLayerParameters

int

setLayerParameters(const int index, const real a, const real b, const real ¢)

Description: Set parameters for the interval (log(cosh)) function numbered i ndex.

a,b,c (input):

Return value: 0 on success, 1 if the stretching type has not been set to i nver seHyper bol i cTangent in which case no
changes are made.

35 STRETCHMAPPING: CREATE 1D STRETCHING FUNCTIONS 173

35.5.8 setlntervalParameters

int

setlntervalParameters(const int index, const real d, const real e, const real f)
Description: Set parameters for the interval (log(cosh)) function numbered i ndex.
d,ef (input):

Return value: 0 on success, 1 if the stretching type has not been set to i nver seHyper bol i cTangent in which case no
changes are made.

35.5.9 setEndPoints

int

setEndPoints(const real rmin, const real rmax)

Description: Set the end points for the i nver seHyper bol i cTangent stretching function.
rmin,rmax (input):

Return value: 0 on success, 1 if the stretching type has not been set to i nver seHyper bol i cTangent in which case no
changes are made.

35.5.10 setlsNormalized
int
setIsNormalized(const bool & trueOrFalse =TRUE)

Description: Indicate whether the stretching function should be normalized to go from 0 to 1.

trueOrFalse (input): if TRUE the function is normalized.

35.5.11 setScaleParameters

int

setScaleParameters(const real origin_, const real scale_)

Description: Set the origin and scale parameters for the i nver seHyper bol i cTangent stretching function.
origin_, scale_ (input):

Return value: 0 on success, 1 if the stretching type has not been set to i nver seHyper bol i cTangent in which case no
changes are made.

35.5.12 setlsPeriodic

int

setlsPeriodic(const int trueOrFalse)

Description: Define the periodicity of the function, only appliestothei nver seHyper bol i cTangent stretching function.

trueOrFalse (input): TRUE or FALSE.

Return value: 0 on success, 1 if the stretching type has not been set to i nver seHyper bol i cTangent in which case no
changes are made.

35 STRETCHMAPPING: CREATE 1D STRETCHING FUNCTIONS 174

35.5.13 setHyperbolicTangentParameters

int

setHyperbolicTangentParameters(const real & a0_,
const real & ar_,
const real & al_,

const real & bl_,
const real & c1.)

Description: Set the parameters for the hyper bol i cTangent stretching function.
a0_ar_,al bl _cl,, (input):
Return value: 0 on success, 1 if the stretching type has not been set to hyper bol i cTangent in which case no changes are
made.
35.5.14 setExponentialParameters
int
setExponentialParameters(const real & a0_,
const real & ar_,
const real & al_,

const real & bl_,
const real & cl.)

Description: Set the parameters for the exponent i al stretching function.
a0_,al_ bl cl,, (input):

Return value: 0 on success, 1 if the stretching type has not been set to exponent i al in which case no changes are made.

35.6 Examples
Here is an example of the use of the St r et chMappi ng class.

#i nclude "Stretch. h"

void main()

{

const int axisl = 0;
const int axis2 = 1;
const int axis3 = 2;

real Array r(1,3);
real Array t(1,3);
real Array tr(1,3,3);

StretchMapping stretchl(2, 0); /'l two |ayers, zero intervals
stretchl. set Layer Paraneters(0, 1., 10., .25); Il set layer 0, a,b,c
stretchl. set Layer Parameters(1, 1., 10., .75); // set layer 1, a,b,c
stretchl. setlsPeriodi c(FALSE); /1 default is FALSE

r(0,axi sl)=.5;

stretchl. map(r,t,tr); /'l eval uate

StretchMapping stretch2(0, 1); /'l zero layers, one interval

stretch2.setlnterval Parameters(0, 5., 20., .25); // spacing is snmaller
stretch2.setlnterval Parameters(1, 0., 0., .75); // between .25 and .75
stretch2. setlsPeriodi c(FALSE); /1 default is FALSE

r (0, axi s1) =. 25;
stretch2. map(r,t,tr); /'l eval uate

35 STRETCHMAPPING: CREATE 1D STRETCHING FUNCTIONS 175

stretch
1.00 - ,
()\(] /
/
075~ /
ya
//
0.50 - _
-
_—
-
e
0.25 - /
ool e e
0.00 0.25 0.50 0.75 1.00

x1

Stretching function: inverseHyperbolicTangent, 1 layer,
aop = 1., bg = 10., cg = .5. This function will concentrate
grid points near r = .5

stretch
1.00 yi
o /
/
0.75 /
/
/
/,/
050 - —
e
//
/,
0.25 /
/
/
/
L/
ooo v e e e
0.00 0.25 0.50 0.75 1.00

x1

Stretching function: hyperbolicTangent, ag = 0.,a, = 1.,
a1 = —.9ag/b1, by = 5., ¢; = .5. This function will
concentrate grid points near r = .5

stretch

1.00 - ~

o S
d
yd
e

r b

075 e
/
[e
e
S
S
0.50 - /
/
/
/

0.25 /

-/

-/
ool v o L L e L e

0.00 0.25 0.50 0.75 1.00

x1

Stretching function: inverseHyperbolicTangent, 1 interval,
do = 2., e9 = 10., fo = .5, f1 = 1.5. This function will
have grid spacing that is twice as small for r > .5

stretch
/
/
//
0.750 |~ /
o /
/

0.500 - /

r /

/
/

L ’ /
0.250 — /

I /

e
pd
L d
o

0.000 [~ P —

L1, I | |

0.00 0.25 0.50 075 1.00

Stretching function: exponential, ag = 0., a, = 1., a1 = 1.,
b1 = 5., ¢c; = .5. This function will have grid spacing that
concentrated near r = 0.

35 STRETCHMAPPING: CREATE 1D STRETCHING FUNCTIONS

stretch
1.00 —
o /
/
/
/
075 /
/
/
f /
0.50 - /
/
/
/
/
0.25
/
/
opol— v L 1 e
0.00 0.25 0.50 0.75 1.00

x1

Stretching function: exponentialBlend. This function is
exactly 0. for r < 1 and exactly 1 for r > 3.

176

36 STRETCHEDSQUARE: STRETCH GRID LINESON THE UNIT INTERVAL 177

1 T

To Lo

Figure 19: The StretchedSquare class can be used to stretch grids lines on the unit square or unit cube. The class defines a
mapping from the parameter space (r¢, 1) to the parameter space (zo, z1). Grids lines can be stretched on other Mapping’s
(such as an Annulus) by using the St r et chTr ansf or mclass which composes a Mapping with a St r et chedSquar e.

36 StretchedSquare: stretch grid lines on the unit interval

36.1 Description

This mapping uses the stretching functions of the St r et chMappi ng class to stretch grid lines on the unit square or unit cube.
The St r et chedSquar e defines a mapping from parameter space to parameter space. It can be used to stretch grids lines on
other mappings (such as an annulus) using the St r et chTr ansf or mclass.

37 STRETCHTRANSFORM: STRETCH GRID LINES OF AN EXISTING MAPPING 178

37 StretchTransform: stretch grid lines of an existing mapping

37.1 Description

This mapping can be used to reparameterize another mapping by stretcing the grid lines in the parameter directions. It does this
by composing the St r et chedSquar e mapping with the given mapping. The St r et chedSquar e mapping in turn uses
the St r et chMappi ng to create stretching functions.

37.2 Constructors

StretchTransform)) Default constructor

37.3 Data Members
37.4 Member Functions

void map(...) evaluate the mapping and derivative

void inverseMap(...) evaluate the inverse mapping and derivative
void get(const Dir & dir, const String & nameletfrom a database file

void put(const Dir & dir, const String & name)puttoa database file

38 SWEEP MAPPING 179

38 Sweep Mapping

The SweepMapping can be used to create these types of mapping’s,
sweep : sweep a curve or surface in the z — y plane along a 3D curve.
extrude : extrude a curve or surface in the z direction.

tabulated-cylinder : generate a surface from a 3D curve by extruding along a specified line.

38.1 Sweep

The sweep option of the SweepMapping will take a planar reference surface S(rq,) (or reference curve S(r;)) and form a
three-dimensional volume (or surface) by sweeping the reference surface along a 3D ‘sweep-curve’ C(r3).
The formula defining the sweep mapping is

X(r1,72,75) = {M(r) [S(r1,72) = co] } a(rs) + C(r)
where

S : the reference surface (or reference curve) to be swept.
C : the curve used for sweeping, the sweep-curve.
M : arotation-translation matrix defined from C and S.
a(rsz) :ascaling function.
co avector used to centre the sweep mapping in different ways.

The vector ¢y determines the centering of the SweepMapping with respect to the reference surface. There are three options
for specifying the centering of the SweepMapping,

co=0 : the centering is based on the sweep curve

co=S(--) : the centering is based on the reference surface.
co = user-specified : the centering is user specified.

Here S(-, -) is the centroid of the reference surface.
B The initial rotation-translation matrix M(r1, 72,0) will be chosen to translate the reference surface so that it’s centroid,
S(-,), is located at the point c,. The centroid is defined as the average value of the grid point locations,

S S0 TiSus
D=t) (et D)

M(r1, 72, 0) will also rotate the reference surface to align with the tangent to the sweep-curve. After this rotation the the normal
to the rotated reference surface will be parallel to the initial tangent of the the sweep-curve, C’(0) . The orientation parameter
(41 or —1) will determine whether the normal to S is in the same or opposite direction to the tangent to the sweep curve. Thus
if the sweep mapping appears ‘inside-out’” one should change the orientation. Instead of changing the orientation one could also
reverse the parameterization of the sweep curve.

This needs to be finished

Here is the old documentation.
Purpose:

Given a planar surface (or curve) S(r1,r2) (or S(ry1)), and a 3D curve C(rs), we would like to generate a 3D volume or surface
by sweepping S perpendicularly to C in such a way that the center of each S, ring lie on the curve C. At r3 = 0, it is assumed
that S = .Sj is orthogonal to C and the tangent to C coincide with the normal n to S. To make sure that the center of S = S
lies at C(0), We first find the center (o, yo, 20) as the average of all the points that make up the sweep surface S, namely

Do Xi
Xo = o 27
n+1

38 SWEEP MAPPING 180

Then a translation that maps C(0) to (xo, yo, 20) is applied to C.

Strategy:

With a sufficient number of grid points in each direction, we incrementally compute the matrix transformation to be used the
following way. At k = 0 corresponding to r3 = 0, the identity matrix is used since S and C satisfy the required conditions and
So = S. For k > 0, the ring Sy, is gotten from the ring S;_, the following way:

A translation that maps the center of S;_, (which is the same point as Cj_1) to the point C,, is applied to S;_;. A rotation
is then applied to the resulting points is such a way that the unit normal to the surface S;_; coincides with the tangent to the
curve C at the point C,. To implement this, the unit vector ng of the surface S;_1 is chosen to be the first vector in a new

orthonormal basis. The second basis vector n, is given by ny = 22Xt where t — 8Clratars) The third basis vector ny is

given by % In the new coordinate system, the rotation is about n; with center at Cj,. Since ng is rotated to coincide
with ¢, the rotation angle is given by cos# = ng - t and sin 6 = ¢ - no. The overall matrix transformation is therefore a product
of three matrices; first the matrix transformation from the canonic basis of the 3D vector space to the basis (no, n1, n2), the
rotation of angle ¢ with center (0,0,0) around n; and finally the matrix transformation from the basis (ng,n1,n2) to the
canonic basis.

For the simplification of the mapping calculations, the discrete values of the global transformation M (7, ok, 73k) are
considered as the points for three splines. With these splines we can calculate the image of any triplet (1, 2, 73). If a(r3) is
the value of the scalar we will multiply (also stored in a spline), the image X (r,r2,73) is given by

X(r1,ra,r3) = {M(r1,72,73) * [S(r1,72) — C(0)]} a(r3) + C(r3)

Remark
At the limit (Ars — 0) corresponding to the continuous case, the basis (ng,n1,n2) becomes proportional to

aC(r3) 9%C(rz) 8C(r3) 82C (r3) :
ora 0 ol 0 ors. X or . In fact when Ars is very small then

oC (r3) " 0C (rs + Ars)

Q

ni

(9’/"3 8’1"3
~ IC(r3) 0C(r3) 820(7“3)
T T, x(ors AT or3 L
~ dC(r3) 820(7“3)
~ AT3 87'3 X 87’3

Acknowledgement: Thanks to Thomas Rutaganira for creating the first version of the SweepMapping.
Here are the description of some functions of the class

38.2 Constructor

SweepMapping(Mapping *sweepmap = NULL,
Mapping *dirsweepmap = NULL,
Mapping *scale = NULL,
const int domainDimension0 =3)

Description: Define a sweep mapping or an extruded mapping.

Build a mapping defined by a sweep surface or curve (a mapping with domainDimension=2 rangeDimension=3 or do-
mainDimension=1, rangeDimension=3) and a sweep curve or line (domainDimension=1, rangeDimension=3).

sweepmap (input) : is the mapping for the sweep surface or curve; default: an annulus with inner radius=0 and outer radius=1
dirsweepmap (input) : The mapping for the sweep curve; default: a half circle of radius=4.

scale (input) : to scale up (> 1) or down (0 < s < 1); default 1.

Author: Thomas Rutaganira.

Changes: WDH + AP

38 SWEEP MAPPING 181

38.3 SetSweepSurface

void
setSweepSurface(Mapping *sweepmap)

Description: Specify the mapping to use as the sweepMap, a 3D surface or a 3D curve. If it is a 3D surface, the resulting
SweepMapping will be a 3D volume and if it is a 3D curve, the SweepMapping will be a 3D surface.

38.4 setCentering

int

setCentering(CenteringOptionsEnum centering)

Description: Specify the centering.

centering (input) : Specify the manner in which the reference surface should be centered. One of useCenterOfSweepSur-

face, useCenterOfSweepCurve or specifiedCenter. See the documentation for further details.

38.5 setOrientation
int
setOrientation(real orientation_=1.)

Description: Specify the orientation of the sweepmapping, +1 or -1. When the sweep surface is rotated to align with the
sweep curve it may face in a forward or reverse direction depending on the orientation. Thus if a swept surface appears
‘inside-out’ one should change the orientation.

38.6 setExtrudeBounds

int

setExtrudeBounds(real za_=0.,
real zb_=1)

Description: Specify the bounds on an extruded mapping.

za_,zb_ (input) :

38.7 setStraightLine
int
setStraightLine(real Ix =0. */, real ly /* =0. */, real Iz /* =1.)

Description: Specify the straight line of a tabulated cylinder mapping

Ix,ly,1z (input) :

38.8 SetSweepCurve

void
setSweepCurve(Mapping *dirsweepmap)

Description: Specify the mapping to use as the curve to sweep along (a 3D curve).

38.9 SetScaleSpline

void
setScale(Mapping *scale)

Description: Specify the mapping to use as the curve to sweep along (a 3D curve).

38 SWEEP MAPPING 182

38.10 setMappingProperties
int
setMappingProperties()

Access: protected.

Description: Initialize the parameters of the sweep mapping.

38.11 FindRowsSplines

void SweepMapping
findRowSplines(void)

Description: This function initializes the splines rowSpline0, 1, 2 that will gives the matrix transformation as well as its
derivatives for the mapping calculations. A point of the spline gives a row for the matrix transformation.

38.12 map
void
map(const realArray & r, realArray & X, realArray & xr, MappingParameters & params)

Description: Use the transformations defined by rowSpline0, rowSplinel, and rowSpline2 and the additional scaling mapping
to compute the image(s) and/or the derivatives for the parameter point(s) defined by r.

38.13 Examples

The command file Overture/sampleMappings/aorticArch.cmd generates the mappings for a model of the aortic arch shown
in figure 20.
Figure 21 shows the grids generated by the SweepMapping for a model of a stadium.

183

for the aortic arch.

ings

d to generate mapp

INg IS use

The SweepMapp

Figure 20

Ay

RN

WA
N

\
N
Y

i\
5

\

XX

=

i

i\

W
W
N
W
R
R
R

T\
W
R

SR
O
R

N
NN

=
i
it

%

7
7

{
SN

5

46005
2

s

W
) AR

£

&
Y

AN
W

W
O
N

W
IO

&
(s
3202
b

7
N
R
R

.
D

N
R

SN
R

ium.

for a stad

ings

d to generate mapp

ing is use

The SweepMapp

Figure 21

38 SWEEP MAPPING

T
22

vt

A ets
A NSO

39 TFIMAPPING: TRANSFINITE-INTERPOLATION 184

39 TFIMapping: Transfinite-Interpolation

Thanks to Brian Miller for help with this Mapping.

Use this Mapping to create a transfinite-interpolation mapping (also known as a Coon’s patch). Transfinite-interpolation
creates a patch (grid) in 2D (3D) using curves (surfaces) that define the boundaries. The quality of this algebaric grid is strongly
dependent on the parameterizations of the boundary curves. // In its simplest form this mapping blends two given curves to
create a grid in the region between the curves. Given the two curves c;(r1) the linear interpolation formula is

X(’I”l, 7’2) = Co(’f‘l)(l — 7’2) —+ 01(7’1)7‘2

With an hermite interpolation it is possible to also specify the r, derivative of the patch at the boundaries. The formula for
hermite interpolation between two curves is

X(Tl,’l"z) = Co(’l"l)(bo(?‘Q) + C(Tl)q)l(’l‘g) + éo(?“l)\I/Q(TQ) + é(Tl)\Ill(Tg)
where the blending functions are given by

Bo(r) = (14+2r)1 —7)* B1(r) = (3 —2r)r?
To(r) =r(1 —r)? Uy (r) = (r—1)r?

The patch will satisfy the conditions
) 0))
x(r1,4) = ¢;(r1) and —=x(r1,0) = ¢;(r1) i=0,1
87“2

The grid lines will be normal to the boundary provided that we choose the derivatives ¢; to be proportional to the normal
vectors. The scaling of this vector will determine the grid spacing near the boundary. We choose

¢i(r) = [lex(r) — co(r)] ni(r)
where n;(r) is the unit normal vector and ||(a, b)|| = va? + b2.

The derivative of the hermite-interpolant involves the second derivative of the boundary curves and is given by

0 (r)@0(ra) + () ®1(ra) + () Po(ra) + oy (1) ¥ (1)

—x(r1, 1) =
87‘1 (b 2) 87“1 87“1 87‘1 87“1
where . .
0 . (c1—co)-(Crpr —Cop)Ci (€i-Cipiry)Cimy
5. Ci = 2 - 2
ory ller — col| [

More generally a transfinite-interpolation mapping can interpolate 4 curves in 2D/3D or up to 6 curves in 3D. Define

Clety : Side corresponding to r; = 0.
Cright : Side corresponding to vy = 1.
Chottom : Side corresponding to ro = 0.
Ciop : Side corresponding to o = 1.
Chack : Side corresponding to 3 = 0.
Crront : Side corresponding to r3 = 1.

The notation ‘left’, ‘right’, etc. comes from the fact that when a cube is plotted in the graphics window the left side is the face
r1 = 0, the right face is r; = 1 etc.
In two dimensions, when 4 sides are specified, the formula for linear interpolation is

c(r1,72) = Cleft(12) (1 — 71) + Cright(r2)T1

+ Chottom (Tl)(l - T2) + Ctop(’rl)r2

— {1 =72)((1 = r1)eien (0) + r1cuigni (1)) + 2((1 = 71)botiom(0) + 11ci0p(1) §.

39 TFIMAPPING: TRANSFINITE-INTERPOLATION 185

The last line in this formula represents a correction, a bilinear function that passes through the four corners, that ensures the
mapping, c, matches the four boundary curves. In three-dimensions with 6 sides specified

c(r1,72) = Cleft(r2,73) (1 — 71) + Cright (12, 73)71
+ Chottom (71, 73) (L — 72) + Ciop (1, 73)72

+ Chack (71, 72)(1 = 73) + CFront (71, 72)73

— {(1 —72)((1 = r1)ciet (0,73) + r1Cright (0,73)) + 72((1 — 71)Chottom (0, 73) + 1Ctop(1,73))
+ (1 =72)((1 = 7r3)Chottom (71, 0) + r3ciop(r1, 1)) +r2((1 — 73)Chack (71, 1) + 73CFront (71, 1))
+ (1 —r3)((1 — 71)cback(0,72) + r1Crront (1, 72)) + 73((1 — 71)Cless (72, 1) + 71 Crighe (772, 1))}
+ {(1 —r3)[(1 = r2)((1 —71)c(0,0,0) + r1¢(1,0,0)) + r2((1 — r1)c(0,1,0) + r1¢(1, 1,0)))
+r3[(1 —r2)((1 —71)e(0,0,1) +7r1¢(1,0,1)) + 72((1 — r1)c(0,1,1) + r1c(1, 1, 1)))} .

In the 3d case we must first subtract off corrections as in 2D (3 such corrections) and then add back a trilinear function that
passes through the 8 vertices to ensure that all 6 sides are matched.

39.1 Compatibility conditions

The above TFI formulae will only give a reasonable grid if
1. The curves that define the faces match at vertices (and edges in 3d).
2. The curves are parameterized in the ‘same direction’, otherwise the grids lines could cross.
3. Curves on opposite sides are parameterized in a similar way.

Even if all these conditions are met the grid lines may still cross if the boundary curves are strange enough.

39 TFIMAPPING: TRANSFINITE-INTERPOLATION

39.2 Examples
39.2.1 2D linear TFI mapping with 2 sides specified

1 *

2 * Create a patch with transfinite interpo
3 *

4 * create a line for the top boundary
5 line

6 nunber of di nensions
7 2

8 specify end points

9 -1, 1. 1. 1.

10 exit

11 * create a spline for the bottom boundary
12 spline

13 enter spline points
14 5

15 1. 0

16 -.50

17 0. .25

18 .5 .0

19 1. 0

20 exit

21 * create a tfi patch
22 tfi

23 choose bottom curve
24 spline

25 choose top curve

26 l'ine

27 mappi ngName

28 tfi

29 pause

30 exit

31 check

32 tfi

33

]
=
]

frnnm

-/
//
/]

——

A grid created with linear trans-finite interpolation

186

OCo~NoOOR~WNE

39 TFIMAPPING: TRANSFINITE-INTERPOLATION

39.2.2 2D hermite TFI mapping with 2 sides specified

Create a patch with transfinite interpo

create a line for the top boundary
i ne
nunber of di nensions
2
speci fy end points
-1, 1. 1. 1.
exi t
* create a spline for the bottom boundary

*
*
*
*
I

spline %
enter spline points ”
5
-1. 0.
.5 0.
0. .25
5.0
1. 0.
exit
* create a tfi patch

tf
choose bottom
spline
choose top
l'ine
hermte interpolation
mappi ngNane
tfi
pause
exit
check
tfi

qA75

aksy]
T T T T T T

Q25

TTT T

/77
i

K—his

to the bottom and top boundaries

187

A grid created with hermite trans-finite interpolation; grid lines are normal

39 TFIMAPPING: TRANSFINITE-INTERPOLATION 188

39.2.3 2D linear TFI mapping with 4 sides specified

oo~NoOo U~ wWNE

spline
enter spline points
3
-1.0 -1.0
0.0 -.5
1.0 -1.0 100
I'i nes g F
21 075
mappi ngNamne F
bot t onBpl i ne 0.50
exit r
spline 0.25¢
enger spline points T
-1.5 .5 E
0.0 1.0 e
Vimes ~050¢
21_ —~0.75F
mappi ngNanme F
t opSpline qople e N
exit -1.50 -1.00 -0.50 -0.00 0.50 1.00 1.50
spline X1
enter spline points
3
-1.0 -1.0
-1.0 -.25
1.5 .5
l'i nes
21
mappi ngNanme
| eft Spline
exit
spline
enter spline points
3 100
1.0 -1.0 o f — |
1.25 -.25 075 ’g===
1.5 1.0 : ,‘,————
iges R ===
21 s ”‘—-
mappi ngNane oask ¢¢ﬁ===~
ri ght Spline F é”==.=
exit o.o0f- e e My
e JAZZZ=E==S
mappi ngName -025F //’__.N\
tfi2d4 F //’-~~\
choose bottom -050F // ~\
bot t onBpl i ne /
choose top 0751
topSpl i ne qzwuw‘\.w‘.w‘.‘m.m‘.‘\
choose | eft - '90«50 -1.00 -0.50 -0.00 0.50 1.00 1.50
| eft Spline I
choose right
ri ght Spline
pause
exit
check
tfi2d4

A grid created with linear trans-finite interpolation, all four sides are
specified. The top figure shows the 4 boundary curves before interpolation.

©o~NoUT~WNE

39 TFIMAPPING: TRANSFINITE-INTERPOLATION 189

39.2.4 3D linear TFI mapping with 2 sides specified

TFIMapping

3D TFlI Mappi ng between two Annul us map| !H‘ T

gl —
ey
P
T 'E'gqaé;géf ;
3?‘;; g

E

make the annulus for the top
Annul us
make 3d (toggle)

2

mappi ngNane
t op- annul us
exit E* ;

* make the annulus for the bottom : q 5’@5
', e‘il a; Ui E‘;:;!a;sﬁlif

wfll%l;%aﬁ!a;gklili!iélilaé%!ilﬁlﬁsi

Annul us
outer radius
1.5
i nner radius
1
make 3d (toggle)
0

3
0) !i
Ui &Bl ilaleeagzi §E§§§!§Etl§ il

mappi ngNane
bot t om annul us
exit
tfi
choose back curve
bot t om annul us
choose front curve
t op- annul us Sl
boundary conditions ‘ : : 190
-1-11234 N

150

A grid created with linear trans-finite interpolation between two Annulus
mappings.

39.3 setSides

int

setSides(Mapping *left =NULL,
Mapping *right =NULL,
Mapping *bottom =NULL,
Mapping *top =NULL,
Mapping *front =NULL,
Mapping *back =NULL)

Purpose: Build a TFIMapping and supply curves that define the boundaries. Specify 0, 2, 4 or 6 curves. The Trans-Finite-
Interpolation (TFI) Mapping (also known as a Coon’s patch) will interpolate between the boundary curves to define a
mapping in the space between. See the documentation for further details.

left, right (input): curves forr; =0andr; = 1.
bottom, top (input): curves for ro = 0 and ro = 1.

front, back (input): curves for r3 = 0 and 3 = 1 (3D only).

39.4 flipper
int
flipper()

Purpose: Try to flip the curve parameterizations to make the mapping non-singular.

Notes: Fix up a TFIMapping that turns inside out because the bounding curves are not parameterized in compatible ways.

39 TFIMAPPING: TRANSFINITE-INTERPOLATION 190

39.5 map

void
map(const realArray & r, realArray & X, realArray & xr, MappingParameters & params)

Purpose: Evaluate the TFI and/or derivatives.

39.6 update
int
update(Mappinglnformation & mapinfo)

Purpose: Interactively create and/or change the TFI mapping.

maplnfo (input): Holds a graphics interface to use.

40 TRIMMEDMAPPING: DEFINE A TRIMMED SURFACE IN 3D 191

40 TrimmedMapping: define a trimmed surface in 3D

40.1 Description

A trimmed surface consists of a standard (i.e. logically rectangular) mapping (’surface”) which has regions removed from
it. The portions removed are defined by curves in the parameter space of the mapping. The IN-ACTIVE part of the trimmed
surface is any point that is outside the outer boundary or inside any of the inner curves. Thus one inner curve cannot be inside

another inner curve. None of the trimming curves are allowed to intersect each other. o
Here is how you should evaluate a trimmed mapping (accessing the mask array to indicate whether the point is inside or
outside):

Tri mmedMapping trim
... assign the TrimedMappi ng sonehow . ..
Real Array r(10,2), x(10,3), xr(10,3,2);
.assignr
Mappi ngPar anmet er s par ans; /1 we need to pass this option argunent to "map"
trimmp(r, X, Xxr, parans);
IntegerArray & nmask = parans.mask; // mask(i) = 0 if point is outside, =1 if inside
for(int i=0; i<9; i++)

if(mask(i)==0)

/1 point is outside, x(i,0:2) are the coordinates of the untrimmed surface at r(i,0:1)
el se

// point is inside, x(i,0:2) are the coordinates of the trimed surface at r(i,0:1)

trimrned mapping

2 s

Figure 22: A trimmed mapping with an outer trimming curve and 2 inner trimming curves. To plot the mapping we project
points which are just outside the trimmed region onto the boundary

40.2 Constructor
TrimmedMapping()

Purpose: Default Constructor

40 TRIMMEDMAPPING: DEFINE A TRIMMED SURFACE IN 3D 192

TrimmedMapping from the data base

Figure 23: A trimmed mapping with an outer trimming curve and 1 inner trimming curve

40.3 Constructor

TrimmedMapping(Mapping & surface_,
Mapping *outerCurve_=NULL,
const int & numberOflinnerCurves_ =0,
Mapping **innerCurve_=NULL)

Purpose: Create a trimmed surface

surface (input) : surface to be trimmed

outerCurve (input) : curve defining the outer boundary, if NULL then the outer boundary is the boundary of surface
numberOflnnerCurves (input) : number of closed curves in the interior that trim the surface

General Notes: In order to evaluate a trimmed mapping we need to decide whether we are inside or outside. To make this
determination faster, we divide the domain space (r) with a quadtree mesh: the domain is broken into 4 squares, each of
which is subdivided into 4 again, recursively as needed. Each square is marked whether it lies inside the domain, outside,
or partly in and partly out. It is quick to traverse the quadtree to find which square a given point is in. If the square is
inside or outside we are done. If it is mixed, we usually have to check the point against only one curve to determine
insideness.

40.4 Constructor

TrimmedMapping(Mapping & surface_,
const int & numberOfTrimCurves_ =0,
Mapping **trimCurves_ =NULL)

Purpose: Create a trimmed surface

surface (input) : surface to be trimmed

40 TRIMMEDMAPPING: DEFINE A TRIMMED SURFACE IN 3D 193

numberOfTrimCurves_ (input) : number of closed curves that trim the surface
trimCurves_ (input) : the trimming curves

General Notes: In order to evaluate a trimmed mapping we need to decide whether we are inside or outside. To make this
determination faster, we divide the domain space (r) with a quadtree mesh: the domain is broken into 4 squares, each of
which is subdivided into 4 again, recursively as needed. Each square is marked whether it lies inside the domain, outside,
or partly in and partly out. It is quick to traverse the quadtree to find which square a given point is in. If the square is
inside or outside we are done. If it is mixed, we usually have to check the point against only one curve to determine
insideness.

40.5 setCurves
int
setCurves(Mapping & surface_,

const int & numberOfTrimCurves_ =0,
Mapping **trimCurves_ =NULL)

Purpose: Specify the surface and trimming curves.
surface (input) : surface to be trimmed
numberOflnnerCurves (input) : number of closed curves that trim the surface

trimCurves_ (input) : the oriented trim curves that trim the surface

40.6 setUnlnitialized

void
setUnlInitialized()

Description: Indicate that this Mapping is not up to date. This will destroy the triangulation used to plot it.

40.7 initializeTrimCurves

void
initializeTrimCurves()

Access: protected

Description: Compute trimming curve arclengths, areas, orientation, dRmin, dSmin.

40.8 addCurve

bool
addTrimCurve(Mapping *newCurve)

Purpose: Add a trimming curve to the surface
newCurve (input) : the new trim curve

returns : true if there were no problems with the trimming curve, false otherwise

40.9 deleteTrimCurve

bool
deleteTrimCurve(int curveToDelete)

Purpose: delete a specific trimming curve from the surface. Note : if the curve to be delete is the last counterclockwise curve,
then a default trimming curve is built consisting of the untrimmed surface’s boundary.

curveToDelete : index of the trim curve to be removed

returns : returns false if the last counterclockwise trim curve was removed resulting in the creation of a default outer curve.

40 TRIMMEDMAPPING: DEFINE A TRIMMED SURFACE IN 3D 194

40.10 deleteTrimCurve

bool
deleteTrimCurve(int numberOfCurvesToDelete, int *curvesToDelete)

Purpose: delete multiple trimming curves from the surface. Note : if the curve to be delete is the last counterclockwise curve,
then a default trimming curve is built consisting of the untrimmed surface’s boundary.

numberOfCurvesToDelete (input): the length of the array curvesToDelete
curvesToDelete (input): an array containing a list of the curves to be deleted

returns : returns false if the last counterclockwise trim curve was removed resulting in the creation of a default outer curve.

40.11 undoDelete

bool
undoL astDelete()

Purpose: undo the last call to deleteTrimCurve

returns : true if successfull, false otherwise

40.12 initializeQuadTree (protected)

void
initializeQuadTree(bool buildQuadTree =true)

Description: Initialize things needed by the quad-tree search and optionally build the quad-tree.

o initialize the bounding boxes for each of the trimming curves
e Make the array rCurve[c] point to the "grid” for each trimming curve
o determine the rBound array which holds the bounds on the unit square in which conatins the trimmed surface.

40.13 getOuterCurve

Mapping*
getOuterCurve()

Description: Return a pointer to the outer trimming curve.

40.14 getlnnerCurve

Mapping*
getlnnerCurve(const int & curveNumber)

Description: Return a pointer to the inner trimming curve number curveNumber.
curveNumber (input) : number of the trimming curve, between 0 and get Nunber Of | nner Cur ves() . Return O if the
curveNumber is invalid.

40.15 curveGoesThrough

bool
curveGoesThrough(const TMguad& square, const int& ¢, int& segstart, int& segstop) const

Access: public.

Description: Determine whether the polygonal curve ¢ goes through the square quadtree node “square”. If so, return true.
One may specify starting and stopping segment numbers of the curve. These will be reset to indicate the curve segments
which pass through the square. 0 and -1 mean to use all segments.

40 TRIMMEDMAPPING: DEFINE A TRIMMED SURFACE IN 3D 195

40.16 insideOrQutside
int
insideOrOutside(const realArray & rr, const int & ¢)

Access: protected.

Purpose: find if the point rr lies inside the curve ¢ (actually inside the polygon defined by rCurve(0:n,0:1)) and return the
distance to that curve.

Method: Use the routine from the mapping inverse to count how many times a vertical ray traced above the point crosses the
polygon. NOTE: points exactly on the boundary are "outside” by this definition

rr (input): point the the parameter space of the untrimmed surface.
¢ (input): curve number.
distance (output):

Return values: +1 if the point is inside the outerCurve (c==1) or oustide the inner curve (c¢1)
-1 otherwise

40.17 insideOrQutside
int
insideOrOutside(const realArray & rr, const int & ¢, realArray & distance)

Access: protected.

Purpose: find if the point rr lies inside the curve ¢ (actually inside the polygon defined by rCurve(0:n,0:1)) and return the
distance to that curve. This routine calls the i nsi deOr Qut si de(const real Array & rr, const int &
¢) function.

rr (input): point the the parameter space of the untrimmed surface.
¢ (input): curve number.
distance (output):

Return values: +1 if the point is inside the outerCurve (c==1) or oustide the inner curve (c¢1)
-1 otherwise

40.18 findClosestCurve
int
findClosestCurve(const realArray & X,
intArray & cMin,
realArray & rC,
realArray & xC,
realArray & dist,
const int & approximate =TRUE)

/ N.B. I HAVE CHANGED THIS: Some changed in the specification are to match the actual code, and some changes in the
code are to match the pre-existing specification. But the code has changed in that cMin=-2 has a new, special meaning. (jfp
0399)

Access: protected.
Description: Find the closest curve to a point and/or determine if the point is inside the curve.

X(R,.) (input) : points in the untrimmed surfaces parameter space

40 TRIMMEDMAPPING: DEFINE A TRIMMED SURFACE IN 3D 196

cMin(R) (input/output) : If cMin(base)¢0, then each cMin(i) is the number of the curve to be used for x(i,.). If cMin(base);0,
then all curves will be checked, and on output cMin(i) will be the number of the curve nearest x(i,.) (This has been
implemented only for the case where x is one point.) When cMin(base);0, cMin(i)==-2 means to skip computing the
projection of x(i,). When cMin(base)=-2, nothing is computed.

XC(R,.) (output) : closest point on closest curve
dist (output) : dist(R) = minimum distance

approximate (input) : if TRUE only determine an approximation to the closest closest point on the closest curve (based on
the nearest grid point on the polygonal representation of the curve).

40.19 findDistanceToACurve

int

findDistanceToACurve(const realArray & X,
IntegerArray & cMin,

realArray & dist,
const real & delta)

Access: protected.

Description: Find the approximate distance to a curve. (approximate if the distance ¢, deltaX)

X(R,.) (input) : points

cMin(R) (input/output) : if 40 on input then use this curve, on output it is the number of closest curve

dist (output) : dist(R) = approximate distance

40.20 map

void

map(const realArray & r, realArray & X, realArray & xr, MappingParameters & params)
Purpose: Evaluate the Trimmed and/or derivatives.

NOTE: In order to evaluate a trimmed surface you MUST provided a MappingParameters argument. Otherwise only the
untrimmed mapping will be defined.
Notes: (1 The array params.mask(l) is returned with the values -1=outside, O=inside

(2) if point i is outside the grid but near the trimmed boundary the array distanceToBoundary(i) is set to be the distance
(in parameter space) of the point r(i,.) to the nearest trimming curve. The the point is far from the boundary, distance(i)
is set to a large value.

40.21 map

void
mapGrid(const realArray & r,
realArray & X,
realArray & Xxr,
MappingParameters & params =Overture::nullMappingParameters())

Purpose: Map grid points and project grid points that cross a trimming curve onto the trimming curve. This routine is called
by the plotting routine so that trimmed curves are properly plotted.

40.22 update

int

update(Mappinglnformation & maplnfo)

Purpose: Interactively create and/or change the Trimmed mapping.

maplnfo (input): Holds a graphics interface to use.

40 TRIMMEDMAPPING: DEFINE A TRIMMED SURFACE IN 3D

40.23 reportTrimCurvelnfo

astring
reportTrimCurvelnfo(Mapping *c, bool & curveok)

Purpose: return a string describing the state of a trim curve

¢ (input) : the curve in question

40.24 reportTrimminglnfo

astring
reportTrimminglnfo()

Purpose: return a string describing the state of the trimming

40.25 editTrimCurve

int

editTrimCurve(Mapping &trimCurve, Mappinglnformation & maplnfo)

Purpose: Interactively edit a trim curve

maplnfo (input): Holds a graphics interface to use.

40.26 editNurbsTrimCurve

int

editNurbsTrimCurve(NurbsMapping &trimCurve, Mappinginformation & mapinfo)

Purpose: Interactively edit a nurbs trim curve

maplnfo (input): Holds a graphics interface to use.

197

41 UNSTRUCTUREDMAPPING 198

41 UnstructuredMapping

The Unst ruct ur edMappi ng class encapsulates the connectivity for an unstructured mesh. Currently the class supports
the “Finite Element Zoo” collection of element types. This zoo consists of quadrilaterals and triangles in surface meshes and
hexahedra, triangle prisms, pyramids and tetrahedra in volume meshes. A limited set of iterations through the mesh is now
available and described below.

41.1 Implementation Details

Internally, the connectivity consists of two components : element internal connectivity provided by templates, and inter-element
connectivity provided by linked lists. Since the supported element types are limited to the zoo, a canonical ordering of the
vertices, faces, edges, sides, etc., in each element type can be constructed. Small template arrays and helper functions are used
to map element-local indices of these components to global indices. Currently implemented three dimensional orderings are
illustrated by Figure 24. In two dimensions the vertices and faces are simply ordered counter-clockwise starting from 0.

41.2 Iterations Through the Unstructured Connectivity

Iterating through the connectivity consists of using a few inlinable functions which abstract away the underlying representation,
including the canonical orderings of the elements. Normally, a user will never even know the orderings exist (at least they
should beware of depending upon them!). Iterations are also independent of the dimension of the mesh since the connectivity
for all dimensions share the same nomenclature (eg. an edge in 2D is the same as an edge in 3D). The following subsections
provide examples of how to navigate and use the limited set of iterations available in an Unst r uct ur edMappi ng.

41.2.1 Element iteration

/1 assum ng an UnstructuredMappi ng nanmed um exi sts. ..
const IntegerArray &elenments = um get El ements();
for (int e=0; e<um getNunberOfEl enents(); e++) {

/1 ... do stuff with the el enment index

el enent Scal ar (e) = what ever;

41.2.2 \ertex iteration

/1 assunming an UnstructuredMappi ng named um exi sts. ..
const IntegerArray &vertices = umgetVertices();
for (int v=0; v<um getNunberOfVertices(); v++) {

/Il ... do stuff with the vertex index

vertexScal ar(v) = whatever;

41.2.3 Iteration through the vertices in an element

for (int e=0; e<um getNunberOfEl enents(); e++) {
for (int v=0; v<um get Nunber O VerticesThi sEl ement(e); v++) {
vd obal I ndex = um el enent d obal Vertex(e,v);
/[l ... do stuff with global vertex index
vertexScal ar (v@ obal | ndex) = whatever;
}
}

41.2.4 Iteration through the faces

const IntegerArray &elenents = um get El enments();
const IntegerArray &f aceEl ements = um get FaceEl ement s();
for (int f=0; f<um getNunmber O Faces(); f++) {
/1 get the elements on either side of the face
int element0 = faceEl enents(f, 0);
int elementl = faceEl enetns(f, 1);
[/l ... do stuff with the face and el enment indices
faceScal ar(f) = whatever;
el enent Scal ar (el ement 0) += -face;
el enent Scal ar (el ement 1) += face;

41 UNSTRUCTUREDMAPPING 199

41.2.5 Iteration through the vertices in a face

const IntegerArray &elenments = um get El ements();
for (int f=0; f<um getNumber O Faces(); f++) {
const IntegerArray &faceVertices = um get FaceVertices(f);
for (int v=0; v<um get Nunber O VerticesThi sFace(f); v++)
vd obal ndex = um faced obal Vertex(f,v);
/[l ... do stuff with global vertex index
vertexScal ar (v@ obal | ndex) = whatever;

}

41.3 Enum Types

Currently El errent Type is the only enum in Unst r uct ur edMappi ng. El ement Type enumerates the supported un-
structured element types.

enum El enent Type

{
triangle,
quadril ateral,
t et rahedron,
pyramid,
triPrism
septahedron, // pray we never need...
hexahedr on,
ot her,
boundary

}s

In 2D, only triangles and quadrilaterals are supported. More types are supported in 3D, but in general these consist of the
“finite element zoo”. These elements are hexahedra or degenerate hexahedra. Currently the septahedron is not supported as
this shape is rather unusual and rarely (?) encountered (7 nodes, 6 faces). ot her implies any shape not described by the
previous enums and at this point could include arbitrary polyhedra (although the connectivity to support arbitrary polyhedra is
not implemented). boundar y elements are typically placeholders. boundar i es will not have a specific geometry associated
with them and may only consist of a limited set of connectivity.

41.4 File Formats

Unst ruct ur edMappi ng’s can be written to two different kinds of files using the member functions get and put . Using
?et or put with an Overture Gener i cDat abase class as the first argument performs io directly to an Overture database
ile. During a put , the instance’s arrays node and el enent are written to the database file. A get retrieves these arrays and
reconstructs the connectivity. Unst r uct ur edMappi ng’s can also be read/written to ASCII files using a simplified version
of a format commonly called “ingrid”, or “DYNA”. This 10 method can be invoked by calling get and put with a string, the
filename, as the first argument. The resulting file looks like :

A text header |ine (optional)

nunmber of meshes, nunmber of nodes, nunber of el enents, domain di mension(optional), range di mension(optional)
node0O I D, x0, yO, zO

nodel ID, x1, y1, z1

nodeN I D, xN, yN, zN
element0 I D, tag0, nl,n2,n3,n4,n5, n6,n7,n8
elementl I D, tagN, node ID |ist

elementN I D, tagN, node ID list

Typically, Overture writes “OVERTUREUMapping” in the comment line and uses the optional spaces for the domain dimension
and range dimension. These details, however, are not required and meshes from a variety of mesh generation tools have been
read in. The node ID lists in the element lines are lists of global node 1D’s (listed in the node section), that are in each element.
The ordering of the nodes in the list follows the canonical ordering described in Figure 24. Currently the code requires that the
nodes be listed in ascending order of thier node I1D’s and that the node IDs be contiguous. By the way, the number of meshes in
the file is ignored, only one mesh per file is supported at the moment.

41 UNSTRUCTUREDMAPPING 200

41.5 Relationship to Normal Overture Mappings

While Unst r uct ur edMappi ng inherits from class Mappi ng, it should be noted that there are a few caveats. By its very
nature, the inverse does not exist for an Unst r uct ur edMappi ng. Any use of an Unst r uct ur edMappi ng in the context
of mapping inverses should be prevented; all member functions dealing with inverses now throw exceptions. However, a
domainDimension and rangeDimension are both still used in the mapping to help donote the difference between 2D meshes,
3D surface meshes and 3D volume meshes. With these exceptions, Unst r uct ur edMappi ngs should play nicely with
conventional sturctured ones. In particular, a structured mapping can be converted into an unstructured one by using the
member function bui | dFr omAMappi ng.

41.6 Member Function Descriptions

41.7 Constructor

UnstructuredMapping(int domainDimension_ =3,
int rangeDimension_ =3,
mappingSpace domainSpace_ =parameterSpace,
mappingSpace rangeSpace_ =cartesianSpace)

Description: Default Constructor

41.8 Constructor
UnstructuredMapping()

Description: Default Constructor

419 addGhostElements

void
addGhostElements(bool trueOrFalse)

Description: Specify whether to add ghost elements to the unstructured mapping.

trueOrFalse (input): If true add ghost elements to the unstructured mapping.

41.10 getBoundaryFace

const intArray &
getBoundaryFace() const

Description: Return a list of boundary faces,

boundaryFace (return value) : faces on the boundary.

41.11 getGhostElements

const intArray &
getGhostElements() const

Description: Return a list of ghost elements.

boundaryFace (return value) : faces on the boundary.

41.12 getMask

const intArray &
getMask(Entity TypeEnum entity Type) const

Description: Return a list of ghost elements.

boundaryFace (return value) : faces on the boundary.

41 UNSTRUCTUREDMAPPING

41.13 getBoundaryFaceTags

const intArray &
getBoundaryFaceTags() const

Description: Return a list of the tags on each boundary face, usefull for boundary conditions

boundaryFaceTags (return value) : tags for faces on the boundary.

41.14 getNumberOfNodes
int
getNumberOfNodes() const

Description: Return the number of nodes.

41.15 getMaxNumberOfNodesPerElement
int
getMaxNumberOfNodesPerElement() const

Description: Return the maximum number of nodes per element (max over all elements).

41.16 getMaxNumberOfNodesPerElement
int
getMaxNumberOfFacesPerElement() const

Description: Return the maximum number of faces per element (max over all elements).

41.17 getMaxNumberOfNodesPerFace
int
getMaxNumberOfNodesPerFace() const

Description: Return the maximum number of nodes per face (max over all faces).

41.18 getNumberOfElements
int
getNumberOfElements() const

201

Description: Return the number of elements (such as the number of triangles on a 2d grid or 3d surface or the number of

tetrahedra in a 3d grid).

41.19 getNumberOfFaces
int
getNumberOfFaces() const

Description: Return the number of faces.

41.20 getNumberOfBoundaryFaces
int
getNumberOfBoundaryFaces() const

Description: Return the number of faces.

41 UNSTRUCTUREDMAPPING 202

41.21 getNumberOfEdges
int
getNumberOfEdges() const

Description: Return the number of edges.

41.22 getNodes

const realArray &
getNodes() const

Description: Return the list of nodes.

node (return value) : list of nodes, node(i,0:r-1) : (X,y) or (X,y,z) coordinates for each node, i=0,1,... r=rangeDimension

41.23 getElements

const intArray &
getElements() const

Description: Return the node information for each element.

element (return value) : defines the nodes that make up each element (e.g. triangle), element(i,n) index into the nodes array
for the node n of element i, for now n=0,1,2 for triangles. Thus element i will have nodes (element(i,0),element(i,1),...)

41.24 getFaces

const intArray &
getFaces() const

Description: Return the connectivity information for each face.

face (return value) : defines the nodes that make up each face (e.g. triangle), face(i,n) index into the nodes array for the node
n of face i,

41.25 getFaces

const intArray &
getFaceElements() const

Description: Return the connectivity information containing the elements adjacent to each face.

faceElements (return value) : defines the elements adjacent to each face, faceElements(i,e) index into the elements array for
the element e of face i, for now e=0,1 since each face has two elements. For now, faces on a boundary return -1 for e=1.

41.26 getEdges

const intArray &
getEdges() const

Description: Return the connectivity information for each edge.

edge (return value) : defines the 2 nodes that make up each edge. face(i,n) index into the nodes array for the node n of face i,
for now n=0,1. Thus edge 0 will have end points with node numbers (edge(i,0),edge(i,1))

41.27 getElementFaces

const intArray &
getElementFaces()

Description: Return the connectivety array describing the faces that belong to an element.

elementFaces (return value) : defines the faces that belong to an element. face=elementFaces(e,i) is the face for i=0,1,..

41 UNSTRUCTUREDMAPPING 203

41.28 getTags

const intArray &
getTags() const

Description: Return the element tagging information.

tags (return value) : an integer tag for each element, defaults to 0 for every element

41.29 setElementDensityTolerance

void
setElementDensityTolerance(real tol)

Description: Specify the tolerance for determining the triangle density when building from a mapping. The smaller the
tolerance the more triangles. Choose a value of zero to use the default number of elements

tol (input) : new tolerance.

41.30 setTags

void
setTags(const intArray &new_tags)

Description: Set the list of tags for each element;

tags (input) : an array the length of the number of elements containing an integer tag for each element (eg like material region
identifier)

41.31 setNodesAndConnectivity

int

setNodesAndConnectivity(const realArray & nodes,
const intArray & elements,

int domainDimension_=-1,
bool buildConnectivity =true)

Description: Supply a list of nodes and a list of connectivity information.
nodes (input) : nodes(i,0:r-1) (x,y) or (x,y,z) coordinates for each node, i=0,1,... r=rangeDimension

elements (input) : defines the nodes that make up each element (e.g. triangle), elements(i,n) index into the nodes array for
the node n of element i, for now n=0,1,2 for triangles. Thus element 0 will have nodes (elements(i,0),elements(i,1),...)
A value of elements(i,n)==-1 means no node is used. This option is used to specify elements with different numbers of
nodes per elements. For example if one has quadrilaterals and triangles then set element(i,3)=-1 for triangles.

41.32 setNodesElementsAndNeighbours
int
setNodesElementsAndNeighbours(const realArray & nodes,
const intArray & elements,
const intArray & neighbours,
int numberOffFaces_ =-1,
int numberOfBoundaryFaces_=-1,
int domainDimension_ =-1)

Description: Supply a list of nodes, elements and element neighbours. The element neighbours are used in building the
connectivity information. This should be faster than using setNodesAndConnectivity.

nodes (input) : nodes(i,0:r-1) (x,y) or (x,y,z) coordinates for each node, i=0,1,... r=rangeDimension

41 UNSTRUCTUREDMAPPING 204

elements (input) : defines the nodes that make up each element (e.g. triangle), elements(i,n) index into the nodes array for
the node n of element i, for now n=0,1,2 for triangles. Thus element 0 will have nodes (elements(i,0),elements(i,1),...)
A value of elements(i,n)==-1 means no node is used. This option is used to specify elements with different numbers of
nodes per elements. For example if one has quadrilaterals and triangles then set element(i,3)=-1 for triangles.

neighbours (input) : a list of neighbours for each element. / numberOfFaces_ (input) : optionally supply the number of faces,
if known. / numberOfBoundaryFaces_ (input) : optionally supply the number of boundary faces, if known.

41.33 setNodesAndConnectivity

int

setNodesAndConnectivity(const realArray & nodes,
const intArray & elements,
const intArray & faces,
const intArray & faceElements_,
const intArray & elementFaces_,
int numberOfFaces_ =-1,
int numberOfBoundaryFaces_ =-1,
int domainDimension_ =-1)

Description: Supply a list of nodes, elements and element neighbours. The element neighbours are used in building the
connectivity information. This should be faster than using setNodesAndConnectivity.

nodes (input) : nodes(i,0:r-1) (x,y) or (x,y,z) coordinates for each node, i=0,1,... r=rangeDimension

elements (input) : defines the nodes that make up each element (e.g. triangle), elements(i,n) index into the nodes array for
the node n of element i, for now n=0,1,2 for triangles. Thus element 0 will have nodes (elements(i,0),elements(i,1),...)
A value of elements(i,n)==-1 means no node is used. This option is used to specify elements with different numbers of
nodes per elements. For example if one has quadrilaterals and triangles then set element(i,3)=-1 for triangles.

faces (input):
faceElements_ (input):

elementFaces_ (input): / numberOfFaces_ (input) : optionally supply the number of faces, if known. / numberOfBoundary-
Faces_ (input) : optionally supply the number of boundary faces, if known.

41.34 buildFromAMapping

intArray
buildFromAMapping(Mapping & map, intArray &maskin = nullintArray())

Description: Builds an unstructured mapping from another mapping. There are no duplicate nodes. Degenerate elements
occurring from coordinate singularities and periodic boundaries are detected and the appropriate element (hex, prism,
pyramid, tet) is created in the UnstructuredMapping. For example, a spherical polar mesh will, in general, have all
four element types with pyramids at the spherical singularity, tetrahedron connecting the pyramids to the polar axes,
prisms along each polar axis and hexahedra everywhere else. A mask array can optionally be provided to exclude
vertices/elements from the new UnstructuredMapping. However, building a new UnstructuredMapping from a masked
UnstructuredMapping is NOT yet supported. The implementor is a bit lazy.

map (input) : Mapping to use.
maskin (input) : pointer to a vertex mask array to determine which nodes/elements to use

Returns : An IntegerArray mapping the vertices in the original Mapping to the vertices in the new UnstructuredMapping. If
the value of the returned array is -1 at any vertex, then that vertex was masked out of the original mapping.

Comments : Currently the code implements a rather complex algorithm to assign vertex id’s to the boundary nodes. The
complexity of the coding is due to the possibility of polar singularities (with the possible occurance of a spherical
singularity) as well as periodic boundaries. These special cases can occur on any side of any coordinate axis in 2 and
3d. The approach became more complicated than originally intended, there may be a more straightforward way and any
suggestions are welcome.

41 UNSTRUCTUREDMAPPING 205

41.35 printConnectivity
int
printConnectivity(FILE *file stdout)

Description:

41.36 printConnectivity
int
checkConnectivity(bool printResults =true,
IntegerArray *pBadElements =NULL)

Description: Perform consistency checks on the connectivity.
printResults (input): output the results if true.
pBadElements (input/output) : If not null, return a list of the bad Elements.

return value: number of errors found.

41.37 printStatistics
int
printStatistics(FILE *file =stdout)

Description: print some timing statistics.

Description: Build an unstructured grid using a triangulation algorithm. use this routine if the
Mapping boundaries are poorly behaved so that the grid cells give poor quality triangles.

/I In order to use the 2D triangulation function we convert the 3D grid points // x(r0,rl) into 2D arclength coordi-
nates s(r0,rl) // ::display(x,”x”); // compute arclength positions (s0,s1) of each grid point. // :display(s,’s”); //
choose the max area for a triangle from the average area of a cell. // Choose nodes and faces from the boundary
points of the arclength array // First make a list of faces and vertices on the boundaries. faces(humberOfFaces-
1,1)=0; // periodic 11=Range(0,nx-2); // leave off the last point xyz(ia+i,0,R2)=s(nx-1-i,ny-1,R2); // reverse order
xyz2(0,ia+i,R2)=s(0,ny-1-i,R2); // reverse order // ::display(faces,”faces”); // ::display(xyz,”xyz™); // Note that there may
be new nodes introduced. // Make a DataPointMapping of the arclenght positions dpm.inverseMap(sPoints,r); // compute
unit square coordinates for the arclength positions. map.map(r,nodes); // compute 3d positions of triangle nodes.

Description: Optimised version to build an unstructured mapping from another mapping. The connectivity information will
also be built directly.

elementTypePreferred (input): Prefer these type of elements
For triangles the connectivity will usually look like:

|13 / |15/ |17 [|
| /12 | / 14| /16 |
8X- - - - - S p X11

41 UNSTRUCTUREDMAPPING

12 13 14 15
Xe- - - Xe oo -- Xe oo - X
I | I |
|6 | 7 | 8 |
8X- - - - - X----- X----- X11
I | I |
|3 |4 |5 |
4X- - - - - Xe oo - Xe oo - X7
I | I |
o0 |1 | 2 |
Xe- - - X-- - - X-- - - X
0 1 2 3

41.38 get from an ascii file
int
get(const aString & fileName)

Description: Read the unstructured grid from an ascii file.

fileName (input) : name of the file to save the results in.

41.39 put to an ascii file
int
put(const aString & fileName) const

Description: Save the unstructured grid to an ascii file.

fileName (input) : name of the file to save the results in.

41.40 findBoundaryCurves

int

findBoundaryCurves(int & numberOfBoundaryCurves, Mapping **& boundaryCurves)

Description: Locate boundary curves on a 3D surface — booth curve segments on the boundary.

numberOfBoundaryCurves (output) : number of boundary curves found.

206

boundaryCurves (output) : Boundary curves as spline mappings. NOTE: This routine will increment the reference count for

you.

41.41 Constructor
// void

I

/ IDescription: build an unstructured mapping from a composite grid

41 UNSTRUCTUREDMAPPING 207

/ Icg (input) : a composite grid that may or may not be a hybrid grid

//Comments : The composite grid has no restrictions, it could be an overlapping // grid or hybrid mesh. In the case of
an overlapping grid, the UnstructuredMapping // essentially consists of overlapping sections and holes that have no
connectivity // information. A hybrid mesh becomes one consistent UnstructuredMapping.

41.42 Constructor

UnstructuredMapping(int domainDimension_ =3,
int rangeDimension_ =3,
mappingSpace domainSpace_ =parameterSpace,
mappingSpace rangeSpace_ =cartesianSpace)

Description: Default Constructor

41.43 Constructor
UnstructuredMapping()

Description: Default Constructor

41.44 getNumberOfNodes
int
getNumberOfNodes() const

Description: Return the number of nodes.

41.45 getMaxNumberOfNodesPerElement
int
getMaxNumberOfNodesPerElement() const

Description: Return the maximum number of nodes per element (max over all elements).

41.46 getMaxNumberOfNodesPerElement
int
getMaxNumberOfFacesPerElement() const

Description: Return the maximum number of faces per element (max over all elements).

41.47 getMaxNumberOfNodesPerFace
int
getMaxNumberOfNodesPerFace() const

Description: Return the maximum number of nodes per face (max over all faces).

41.48 getNumberOfElements
int
getNumberOfElements() const

Description: Return the number of elements (such as the number of triangles on a 2d grid or 3d surface or the number of
tetrahedra in a 3d grid).

41 UNSTRUCTUREDMAPPING 208

41.49 getNumberOfFaces
int
getNumberOfFaces() const

Description: Return the number of faces.

4150 getNumberOfBoundaryFaces
int
getNumberOfBoundaryFaces() const

Description: Return the number of faces.

4151 getNumberOfEdges
int
getNumberOfEdges() const

Description: Return the number of edges.

41.52 getNodes

const realArray &
getNodes() const

Description: Return the list of nodes.

node (return value) : list of nodes, node(i,0:r-1) : (X,y) or (X,y,z) coordinates for each node, i=0,1,... r=rangeDimension

41.53 getElements

const intArray &
getElements() const

Description: Return the node information for each element.
element (return value) : defines the nodes that make up each element (e.g. triangle), element(i,n) index into the nodes array
for the node n of element i, for now n=0,1,2 for triangles. Thus element i will have nodes (element(i,0),element(i,1),...)

41.54 getFaces

const intArray &
getFaces() const

Description: Return the connectivity information for each face.
face (return value) : defines the nodes that make up each face (e.g. triangle), face(i,n) index into the nodes array for the node
n of face i, for now n=0,1,2 for triangles. Thus face 0 will have nodes (face(i,0),face(i,1),...)

41,55 getFaces

const intArray &
getFaceElements() const

Description: Return the connectivity information containing the elements adjacent to each face.

faceElements (return value) : defines the elements adjacent to each face, faceElements(i,e) index into the elements array for
the element e of face i, for now e=0,1 since each face has two elements. For now, faces on a boundary return -1 for e=1.

41 UNSTRUCTUREDMAPPING 209

41.56 getEdges

const intArray &
getEdges() const

Description: Return the connectivity information for each edge.

edge (return value) : defines the 2 nodes that make up each edge. face(i,n) index into the nodes array for the node n of face i,
for now n=0,1. Thus edge 0 will have end points with node numbers (edge(i,0),edge(i,1))

41,57 getTags

const IntegerArray &
getTags() const

Description: Return the element tagging information.

tags (return value) : an integer tag for each element, defaults to 0 for every element

41,58 setTags

void
setTags(const IntegerArray &new_tags)

Description: Set the list of tags for each element;
tags (input) : an array the length of the number of elements containing an integer tag for each element (eg like material region
identifier)

41.59 setNodesAndConnectivity
int
setNodesAndConnectivity(const realArray & nodes,

const intArray & elements,
int domainDimension_ =-1)

Description: Supply a list of nodes and a list of connectivity information.
nodes (input) : nodes(i,0:r-1) (x,y) or (x,y,z) coordinates for each node, i=0,1,... r=rangeDimension
elements (input) : defines the nodes that make up each element (e.g. triangle), elements(i,n) index into the nodes array for the

node n of element i, for now n=0,1,2 for triangles. Thus element 0 will have nodes (elements(i,0),elements(i,1),...)

41.60 project

int

project(realArray & x, MappingProjectionParameters & mpParameters)
Description: Project points onto the surface

X (input) : project these points.

mpParameters : holds auxillary data to aid in the projection.

41 UNSTRUCTUREDMAPPING 210

41.61 buildFromAMapping

intArray
buildFromAMapping(Mapping & map, intArray &maskin = nullintArray())

Description: Builds an unstructured mapping from another mapping. There are no duplicate nodes. Degenerate elements
occurring from coordinate singularities and periodic boundaries are detected and the appropriate element (hex, prism,
pyramid, tet) is created in the UnstructuredMapping. For example, a spherical polar mesh will, in general, have all
four element types with pyramids at the spherical singularity, tetrahedron connecting the pyramids to the polar axes,
prisms along each polar axis and hexahedra everywhere else. A mask array can optionally be provided to exclude
vertices/elements from the new UnstructuredMapping. However, building a new UnstructuredMapping from a masked
UnstructuredMapping is NOT yet supported. The implementor is a bit lazy.

map (input) : Mapping to use.
maskin (input) : pointer to a vertex mask array to determine which nodes/elements to use

Returns : An IntegerArray mapping the vertices in the original Mapping to the vertices in the new UnstructuredMapping. If
the value of the returned array is -1 at any vertex, then that vertex was masked out of the original mapping.

Comments : Currently the code implements a rather complex algorithm to assign vertex id’s to the boundary nodes. The
complexity of the coding is due to the possibility of polar singularities (with the possible occurance of a spherical
singularity) as well as periodic boundaries. These special cases can occur on any side of any coordinate axis in 2 and
3d. The approach became more complicated than originally intended, there may be a more straightforward way and any
suggestions are welcome.

41.62 get from an ascii file

int

get(const String & fileName)

Description: Read the unstructured grid from an ascii file.

fileName (input) : name of the file to save the results in.

41.63 put to an ascii file

int

put(const String & fileName) const

Description: Save the unstructured grid to an ascii file.

fileName (input) : name of the file to save the results in.

41.64 Constructor

void
buildFromACompositeGrid(CompositeGrid &cg)

Description: build an unstructured mapping from a composite grid
cg (input) : a composite grid that may or may not be a hybrid grid

Comments : The composite grid has no restrictions, it could be an overlapping grid or hybrid mesh. In the case of an over-
lapping grid, the UnstructuredMapping essentially consists of overlapping sections and holes that have no connectivity
information. A hybrid mesh becomes one consistent UnstructuredMapping.

41.65 getColour

astring
getColour() const

Purpose: Get the colour of the grid.

Return value : the name of the colour.

41 UNSTRUCTUREDMAPPING 211

41.66 setColour
int
setColour(const aString & colour)

Purpose: Set the colour for the grid.

colour (input) : the name of the colour such as "red”, "green”,...

41.67 eraseUnstructuredMapping

void
eraseUnstructuredMapping(GenericGraphicsinterface &gi)

Description: purge all display lists for the unstructured mapping

41.68 getColour

astring
getColour() const

Purpose: Get the colour of the grid.

Return value : the name of the colour.

41.69 setColour
int
setColour(const aString & colour)

Purpose: Set the colour for the grid.

colour (input) : the name of the colour such as "red”, ”green”,...

41.70 eraseUnstructuredMapping

void
eraseUnstructuredMapping(GenericGraphicsinterface &gi)

Description: purge all display lists for the unstructured mapping

41.71 addTag

EntityTag &
addTag(const EntityTypeEnum entity Type, const int entitylndex, const std::string tagName,
const void *tagData, const bool copyTag, const int tagSize)

Purpose: add an EntityTag to a specific entity in the mesh

entity Type (input) : the EntityTypeEnum of the entity

entitylndex (input): the index of the entity

tagName (input): name to give the tag instance

tagData (input): data stored by the tag

copyTag (input): deep copy tagData if copyTag==true, shallow copy if false
tagSize (input): if copyTag==true, this is the size of the tagData

Returns : areference to the added EntityTag

41 UNSTRUCTUREDMAPPING 212

41.72 deleteTag

int

deleteTag(const Entity TypeEnum entity Type, const int entitylndex,
const EntityTag &tagToDelete)

Purpose: delete an EntityTag from the mesh

entity Type (input) : the EntityTypeEnum of the entity
entitylndex (input): the index of the entity

tagToDelete (input): a reference to a tag specifying the deletion

Returns : 0 if successfull

41.73 deleteTag

int

deleteTag(const Entity TypeEnum entity Type, const int entitylndex,
const std::string tagToDelete)

Purpose: delete an EntityTag from the mesh

entityType (input) : the EntityTypeEnum of the entity

entitylndex (input): the index of the entity

tagToDelete (input): a string specifying the name of the tag to delete

Returns : 0 if successfull

41.74 hasTag

bool
hasTag(const EntityTypeEnum entityType, const int entitylndex, const std::string tag)

Purpose: check to see if an entity has a particular tag

entity Type (input) : the EntityTypeEnum of the entity
entitylndex (input): the index of the entity

tag (input): a string specifying the name of the tag in question

Returns : true if the tag exists on the entity

41.75 getTag

EntityTag &
getTag(const Entity TypeEnum entity Type,
const int entitylndex, const std::string tagName)

Purpose: obtain a reference to a tag on a specific entity

entityType (input) : the EntityTypeEnum of the entity

entitylndex (input): the index of the entity

tagName (input): a string specifying the name of the tag in question
Returns : the tag requested

Throws : TagError if the tag is not found

41 UNSTRUCTUREDMAPPING 213

41.76 getTagData

void *
getTagData(const Entity TypeEnum entity Type, const int entityIndex,
const std::string tag)

Purpose: obtain the the data in a tag

entityType (input) : the EntityTypeEnum of the entity
entitylndex (input): the index of the entity

tag (input): a string specifying the name of the tag in question

Returns : NULL if the tag did not exist

41.77 setTagData
int
setTagData(const EntityTypeEnum entity Type, const int entityIndex,

const std::string tagName,
const void *data, const bool copyData, const int tagSize)

Purpose: set the data in an existing tag

entity Type (input) : the EntityTypeEnum of the entity

entitylndex (input): the index of the entity

tagName (input): a string specifying the name of the tag in question

data (input): data stored by the tag

copyTag (input): deep copy tagData if copyTag==true, shallow copy if false
tagSize (input): if copyTag==true, this is the size of the tagData

Returns : 0 if successfull

41.78 maintainTagToEntityMap

void
maintainTag ToEntityMap(bool v)

Purpose: turn on/off maintainance of the mapping from tags to thier entities
v (input) : if true turn on the tag to entity mapping, if false turn it off

Note: If v==true, this method will build the mapping. If false, it will destroy the mapping

41.79 maintainsTagToEntityMap

bool
maintainsTag ToEntityMap() const

Purpose: return true if the Mapping maintains the list of entities with a given tag
/ com-
pare the vertices of an entity to a list of vertices, return true if the list specifies the entity // FALSE : no entities of this
type created yet! // FALSE : invalid entity id given! // FALSE : the number of vertices do not match in each entity
/I FALSE : number of vertices do not match! // two entities are the same if thier vertices are the same, note that the
ordering can // be reversed. // first find the starting point for each entity // the starting point is the lowest vertex id //
FALSE : minimum vertex index does not match // now check the vertices in the current order // now check in the opposite
direction (only the previous did not work!) / setAsGhost takes an entity and adjusts the data structures to make it a

41 UNSTRUCTUREDMAPPING 214

ghost // if the entity mask array is there (if not build it?) set the mask // now add the info as a tag // note this is a simple
tag; the only data is the index “entity” // later we may allow construction using connectivity info // vertices do have an
“orientation” relative to thier edges, the lowest vertex index is +ive // later we may allow construction using connectivity
info / connectivityBuilder directs the construction of the connectivity arrays, it returns true if successfull if (!entities[to])
return false; // we don’t have enough information // there is no downward from here! // XXX else add generic downward
builder here! /// we always have this if there are Regions // XXX else add generic downward builder here! // XXX else
add generic downward builder here! / specifyConnectivity tells the mapping to use the given connectivity information
rather than building it / delete specific connectivity information / delete all connectivity information for a specific entity
type / delete ALL the connectivity information

41 UNSTRUCTUREDMAPPING 215

© (d)

Figure 24: Canonical orderings for the 3D finite element zoo: (a) hexahedra; (b) triangle prisms; (c) pyramids; (d) tetrahedra.
Black indicates vertex numbers, green indicates face indices. Smple corners are drawn in red and sides are in blue.

42 CLASSFRACTION 216

42 Class Fraction

This class is used to define “fractions”, the ratio of two integers. Fractions can represent infinity and -infinity with a zero
numerator and nonzero denominator. Thus 1/0 is infinity and —1/0 is -infinity. We define 2/0 be be greater than 1/0.

42.1 Constructors

Fraction(int n, int d=1) define a fraction, n = numerator, d = denominator

Note that we do not know how to construct a fraction from a real number.

42.2 Member Functions

The relational operators <, <, >, > and == are defined for the comparison of two fractions or a fraction and a real number. In
addition, the arithmetic operators +, —, x and / are defined for two objects of type Fraction (or a Fraction and a real or int).
NOTE: By definition the result of the operators +, —, *, or / between a Fraction and a real results in a real.

Here are the member functions that can be used to access the numerator and denominator

i nt setNunerator() set the numerator
i nt setDenoni nator () set the denominator
i nt getNunerator() get the numerator
i nt getDenom nator () get the denominator

43 Class Bound

A bound is defined as a real number, a fraction or null. The bound class implements the bound and supplies functions for
comparing bounds. Bounds allow rational numbers to be specified precisely. Bounds can represent infinity and -infinity by
fractions with a zero numerator and nonzero denominator. Thus 1/0 is infinity and —1/0 is -infinity. We define 2/0 be be
greater than 1/0.

43.1 enum types

enum boundType{ real Nunber, fraction, null };

43.2 Constructors

Bound() default constructor, boundType=null
Bound(real x0) define a bound from a real number
Bound(int i) define a bound from a int

Bound(Fraction fO) define abound from a fraction

43.3 Member Functions

The relational operators <, <, >, > and == are defined for the comparison of two bounds or a bound and a real number, or a
bound and a fraction. In addition the arithmetic operators +, —, x and / are defined for two objects of type Bound. There are
also member functions to assign and retrieve values

void set(real value) assign a real value to the bound
void set(int value) assign an integer value to the bound
void set(int n, int d) assign a numerator and denominator

voi d get(boundType bt, real x, Fraction f) get boundType and value

44 CLASSTRIANGLE 217

44 Class Triangle

The Tri angl e class is used to represent a triangle in three dimensional space. It has a function for determining how two
triangles intersect that is used by the | nt er sect i onMappi ng class.

44,1 Constructor
Triangle()

Purpose: Default Constructor, make a default triangle with vertices (0,0,0), (1,0,0), (0,1,0)

44.2 Constructor(const real x1[],x2[],x3[])
Triangle(const real x1_[3], const real x2_[3], const real x3_[3])
Purpose: Create a triangle with vertices x1,x2,x3

x1,x2,x3 (input) : the three vertices of the triangle

44.3 Constructor(const RealArray & x1,x2,x3)
Triangle(const RealArray & x1_, const RealArray & x2_, const RealArray & x3_)
Purpose: Create a triangle with vertices x1,x2,x3

x1,x2,x3 (input) : the three vertices of the triangle

44.4 Constructor(grid)

Triangle(const realArray & grid,
constint & i1,
const int & i2,
const int & i3,
const int & choice =0,
const int & axis =axisl)

Purpose: Build a triangle from a quadrilateral on the face of a grid grid, This constructor just calls the corresponding
set Verti ces function. See the comments there.

44.5 setVertices(const real x1,x2,x3)

void
setVertices(const real x1_[3], const real x2_[3], const real x3_[3])

Purpose: Assign the vertices to a triangle.

x1,x2,x3 (input) : the three vertices of the triangle

44.6 setVertices(const RealArray & x1,x2,x3)

void
setVertices(const RealArray & x1_, const RealArray & x2_, const RealArray & x3_)

Purpose: Assign the vertices to a triangle.

x1,x2,x3 (input) : the three vertices of the triangle

44 CLASSTRIANGLE 218

447 setVertices

void

set\Vertices(const realArray & grid,
constint & i1,
const int & i2,
const int & i3,

const int & choice =0,
const int & axis =axis3)

Purpose: Form a triangle from a quadrilateral on the face of a grid grid, there are six possible choices.
grid (input) : and array containing the four points gri d(i 1+m i 2+n,i 3, 0: 2), m=0, 1, n=0, 1.
i1,i2,i3 (input) : indicates which quadrilateral to use

choice, axis (input) : These define which of 6 poissible triangles to choose:

choice=0, axis=axis3(==2) : use points (i1,i2,i3), (i1+1,i2,i3), (i1,i2+1,i3). Lower left triangle in the plane i3==constant.

choice=1, axis=axis3(==2) : use points (i1+1,i2+1,i3), (i1,i2+1,i3), (i1+1,i2,i3). Upper right triangle in the plane
i3==constant.

choice=0, axis=axis2(==1) : use points (i1,i2,i3), (i1,i2,i3+1), (i1+1,i2,i3).
choice=1, axis=axis2(==1) : use points (i1+1,i2,i3+1), (i1+1,i2,i3), (i1,i2,i3+1).
choice=0, axis=axis1(==0) : use points (i1,i2,i3), (i1,i2+1,i3), (i1,i2,i3+1).
choice=1, axis=axis1(==0) : use points (i1,i2+1,i3+1), (i1,i2,i3+1), (i1,i2+1,i3).

The figure below shows the two choices for axis=axis3:

44.8 area

real
area() const

Purpose: return the area of the triangle

449 display

void
display(const aString & label =blankString) const

Purpose: print out the vertices and the normal.

4410 tetraheadralVolume

double
tetraheadralVolume(const real a[], const real b[], const real c[], const real d[]) const

Purpose: Return the approximate volume (actually 6 times the volume) of the tretrahedra formed by the points (a,b,c,d)

44 CLASSTRIANGLE 219

44.11 intersects

bool
intersects(Triangle & tri, real xi1[3], real xi2[3]) const

Purpose: Determine if this triangle intersect another.
tri (input) : intersect with this triangle.
xil, xi2 (output) : if the return value is true then these are the endpoints of the line of intersection between the two triangles.

Return value : TRUE if the triangles intersect, false otherwise.

4412 intersects

bool
intersects(Triangle & triangle, RealArray & xil, RealArray & xi2) const

Purpose: Determine if this triangle intersect another.
tri (input) : intersect with this triangle.
xil, xi2 (output) : if the return vaule is true then these are the endpoints of the line of intersection between the two triangles.

Return value : TRUE if the triangles intersect, false otherwise.

4413 intersects

bool
intersects(real x[3], real xi[3]) const

Purpose: Determine if this triangle intersects a ray starting at the point x[] and extending to y=+infinity.
x (input) : find the intersection with a vertical ray starting at this point.
xi (output) : if the return value is true then this is the intersection point.

Return value : TRUE if the ray intersects the triangle, false otherwise.

44.14 intersects

bool
intersects(RealArray & x, RealArray & xi) const

Purpose: Determine if this triangle intersects a line starting at the point x and extending to y=+infinity.
x (input) : find the intersection with a vertical ray starting at this point.
xi (output) : if the return value is true then this is the intersection point.

Return value : TRUE if the ray intersects the triangle, false otherwise.

44.15 getRelativeCoordinates

int

getRelativeCoordinates(const real x[3],
real & alphal,
real & alpha2,

const bool & shouldBelnside =TRUE) const

Description: Determine the coordinates of the point x with respect to this triangle. l.e. solve for alphal,alpha2 where x-x1 =
alphal * v1 + alpha2 * v2

where v1=x2-x1 and v2=x3-x1 are two vectors from the sides of the triangle, (x1,x2,x3) Solve

44 CLASSTRIANGLE 220

[vi.vli vi.v2] [alphal] =1 vi.x]

[vi.v2 v2.v2] [alpha2] =] v2.x]
alphal = (vl.x * v2.v2 - v2.x * vl1.v2) /(vl.vl * v2.v2 - v1.v2 * v1.v2)
alpha2 = (vl.x * v2.v2 - v2.x * vl1.v2) /(vl.vl * v2.v2 - v1.v2 * v1.v2)

X (input) : find coordinates of this point.
alphal, alpha2 (output) : relative coordinates.

shouldBelnside (input) : if true, this routine will print out a message if alphal or alpha are not in the range [0,1] (+/- epsilon),
AND return a value of 1

Return value : 0 on sucess, 1 if shouldBelnside==TRUE and the point is not inside.

REFERENCES 221

References

[1] W. HENSHAW, The overture hyperbolic grid generator, user guide, version 1.0, Research Report UCRL-MA-??, Lawrence
Livermore National Laboratory, 1999.

Index

airfoil mapping, 50 DataPointMapping, 72

annulus mapping, 48 DepthMapping, 78

axisymmetric, 145 discrete mapping, 72
EllipticTransform, 82

basiclnverse, 34 external, 72

bathymetry, 78 FilletMapping, 88

body of revolution, 145 IntersectionMapping, 93

box mapping, 53 JoinMapping, 100

LineMapping, 105

make a 3D mapping by extruding a 2D mapping, 178
! MatrixMapping, 107

COMPOSe mapping, 56 . MatrixTransformMapping, 110

composite surface mapping, 57 NormalMapping, 112

Coon’s patch, 183 NurbsMapping, 114

coordinate singularity, 35 OrthographicTransformMapping, 130
coordinate systems, 16, 17, 36 PlaneMapping, 133

cross-section mapping, 64 plot3d, 72

cylinder mapping, 69 QuadraticMapping, 134

ReductionMapping, 137
ReparameterizationTransform, 139

restrict an existing mapping to face or line, 137
RestrictionMapping, 143

RevolutionMapping, 145

cartesian space, 14
circle mapping, 54

data-point mapping, 72
depth mapping, 78
domainDimension, 14

ellipse, 54 _
elliptic mapping, 82 RocketMapping, 151
rotate, 110
fillet mapping, 88 scale, 110
shift, 110
getindex, 34 SmoothedPolygonMapping, 154
SphereMapping, 158
hyperbola, 134 SplineMapping, 161
hyperboloid, 134 SquareMapping, 167
. . StretchedSquareMapping, 176
interpolation StretchMapping, 168

_ tran_sfinite, 183 StretchTransformMapping, 177
intersecting surfaces, 100 SweepMapping, 178

intersection mapping, 93 TFIMapping, 183
inverse _ _ translate, 110
approximate global inverse, 37 TrimmedMapping, 190
_ exs/?t IOgil inverse, 43 mapping parameters, 36
inverseMap, matrix mapping, 107

join mapping, 100 matrix transform mapping, 110

li ing, 105 NACA, 50

e MApPINg. normal mapping, 112

map, 33 Nurbs

Map’ping trimmed, 190
AirfoilMapping, 50 nurbs mapping, 114

AnnulusMapping, 48
BoxMapping, 53
CircleMapping, 54
ComposeMapping, 56
CompositeSurface, 57
CrossSectionMapping, 64 parabola, 134

CylinderMapping, 69 paraboloid, 134

offset mapping, 127
orthographic, 139
orthographic mapping, 130
overlapping round, 127

222

INDEX 223

parameter space, 14

patched surface, 57

periodic mappings, 33

periodicity, 16

plane mapping, 133

polar singularity
remove, 139

quadratic mapping, 134

rangeDimension, 14

rectangle, 167

reduction mapping, 137

registering a new mapping, 46
reparameterization mapping, 139

restrict a mapping to a sub-rectangle, 139
restriction mapping, 143

revolution mapping, 145

rhombus, 133

Rocket mapping, 151

smoothed-polygon mapping, 154
sphere mapping, 158
spline
curve, 114,127, 161
shape preserving, 161
surface, 114, 127
tension, 161
spline mapping, 161
square mapping, 167
stretch mapping, 168
stretch-transform mapping, 177
stretched-square mapping, 176
stretching
exponential, 170
exponential blend, 170
hyperbolic tangent, 170
inverse hyperbolic tangent, 168
sweep mapping, 178

tfi mapping, 183

transfinite interpolation, 183
triangle, 216

trimmed mapping, 190
TSPACK, 161

